Spaces:
Sleeping
Sleeping
Erva Ulusoy
commited on
Commit
•
2c37d62
1
Parent(s):
edf98f8
update result table columns
Browse files- pages/User_Guide.py +1 -1
- run_domain2go_app.py +2 -2
pages/User_Guide.py
CHANGED
@@ -57,7 +57,7 @@ st.markdown(
|
|
57 |
| protein_name | Protein name you provided in the input FASTA. |
|
58 |
| GO_ID | Gene Ontology term ID. |
|
59 |
| GO_term | Gene Ontology term name. |
|
60 |
-
|
|
61 |
| domain_locations | List of locations of the domain in the protein sequence. |
|
62 |
| probability | Probability of the domain being associated with the GO term. You can find more information about calculation of this score in our [pre-print article](https://www.biorxiv.org/content/10.1101/2022.11.03.514980v1). |
|
63 |
| domain_accession | InterPro domain accession. |
|
|
|
57 |
| protein_name | Protein name you provided in the input FASTA. |
|
58 |
| GO_ID | Gene Ontology term ID. |
|
59 |
| GO_term | Gene Ontology term name. |
|
60 |
+
| GO_category | Gene Ontology term aspect (molecular_function, biological_process or cellular_component). |
|
61 |
| domain_locations | List of locations of the domain in the protein sequence. |
|
62 |
| probability | Probability of the domain being associated with the GO term. You can find more information about calculation of this score in our [pre-print article](https://www.biorxiv.org/content/10.1101/2022.11.03.514980v1). |
|
63 |
| domain_accession | InterPro domain accession. |
|
run_domain2go_app.py
CHANGED
@@ -109,8 +109,8 @@ def generate_function_predictions(domains_df, mapping_path):
|
|
109 |
|
110 |
else:
|
111 |
merged_df['protein_name'] = domains_df['protein_name'].iloc[0]
|
112 |
-
merged_df = merged_df[['protein_name', 'GO', '
|
113 |
-
merged_df.columns = ['protein_name', 'GO_ID', '
|
114 |
|
115 |
# save protein function predictions
|
116 |
protein_name = domains_df['protein_name'].iloc[0]
|
|
|
109 |
|
110 |
else:
|
111 |
merged_df['protein_name'] = domains_df['protein_name'].iloc[0]
|
112 |
+
merged_df = merged_df[['protein_name', 'GO', 'GO_name', 'GO_aspect', 'domain_locations', 's', 'domain_accession', 'domain_name',]]
|
113 |
+
merged_df.columns = ['protein_name', 'GO_ID', 'GO_term', 'GO_category', 'domain_locations', 'probability', 'domain_accession', 'domain_name',]
|
114 |
|
115 |
# save protein function predictions
|
116 |
protein_name = domains_df['protein_name'].iloc[0]
|