import requests from io import StringIO from Bio import SeqIO import os import time import pandas as pd def find_domains(email, sequence, name): # send request to interproscan api headers = { 'Content-Type': 'application/x-www-form-urlencoded', 'Accept': 'text/plain', } data= { 'email': email, 'stype': 'p', 'sequence': f'{sequence}'} job_id_response = requests.post('https://www.ebi.ac.uk/Tools/services/rest/iprscan5/run', headers=headers, data=data) job_id = job_id_response.text # get results headers = { 'Accept': 'application/json', } job_result_url = f'https://www.ebi.ac.uk/Tools/services/rest/iprscan5/result/{job_id}/json' json_output = None entries = dict() with requests.Session() as s: # try 10 times if not successful print error c=0 while c<10: job_result_response = s.get(job_result_url, headers=headers) if job_result_response.status_code == 200: json_output= job_result_response.json()['results'][0] print('InterProScan job done') break else: time.sleep(60) c+=1 if json_output is None: result_text = 'InterProScan job failed' return [result_text, job_id, job_result_response.text] else: for elem in json_output['matches']: entry = elem['signature']['entry'] location_list = [f"{i['start']}-{i['end']}" for i in elem['locations']] if type(entry) == dict and entry['type'] == 'DOMAIN': if entry['accession'] not in entries: entries[entry['accession']] = { 'name': entry['name'], # add locations as a list 'locations': location_list } else: try: entries[entry['accession']]['locations'].extend(location_list) except AttributeError: entries[entry['accession']]['locations'] = entries[entry['accession']]['locations'].split(' ') entries[entry['accession']]['locations'] = [i for i in entries[entry['accession']]['locations'] if i] entries[entry['accession']]['locations'].extend(location_list) entries[entry['accession']]['locations'] = list(set(entries[entry['accession']]['locations'])) entries[entry['accession']]['locations'] = sorted(entries[entry['accession']]['locations'], key=lambda x: int(x.split('-')[0])) entries[entry['accession']]['locations'] = ';'.join(entries[entry['accession']]['locations']) if entries: result_text = 'Domains found.' # create domains dataframe domains_df = pd.DataFrame.from_dict(entries, orient='index').reset_index() domains_df['protein_name'] = name domains_df = domains_df[['protein_name', 'index', 'name', 'locations']] domains_df.columns = ['protein_name', 'accession', 'name', 'locations'] return [result_text, domains_df] else: result_text = 'No domains found.' return [result_text] # generate protein function predictions based on domain2go mappings def generate_function_predictions(domains_df, mapping_path): # read domain2go mappings domain2go_df = pd.read_csv(os.path.join(mapping_path, 'finalized_domain2go_mappings.txt')) print('Domain2GO mappings loaded') # merge domain2go mappings with domains found in protein sequence merged_df = pd.merge(domains_df, domain2go_df, left_on='accession', right_on='Interpro') print('Function predictions generated.') # if merged_df is empty return if merged_df.empty: result_text = 'No function predictions found.' return [result_text] else: merged_df['protein_name'] = domains_df['protein_name'].iloc[0] merged_df = merged_df[['protein_name', 'GO', 'locations', 's', 'accession', 'name',]] merged_df.columns = ['protein_name', 'GO_id', 'domain_locations', 'probability', 'domain_accession', 'domain_name',] # save protein function predictions protein_name = domains_df['protein_name'].iloc[0] result_text= 'Function predictions found.' return [result_text, merged_df]