DrugGEN / inference.py
mgyigit's picture
Update inference.py
718683e
raw
history blame
14.2 kB
import os
import sys
import time
import random
import pickle
import argparse
import os.path as osp
import torch
import torch.utils.data
from torch_geometric.loader import DataLoader
import pandas as pd
from tqdm import tqdm
from rdkit import RDLogger, Chem
from rdkit.Chem import QED, RDConfig
sys.path.append(os.path.join(RDConfig.RDContribDir, 'SA_Score'))
import sascorer
from src.util.utils import *
from src.model.models import Generator
from src.data.dataset import DruggenDataset
from src.data.utils import get_encoders_decoders, load_molecules
from src.model.loss import generator_loss
from src.util.smiles_cor import smi_correct
class Inference(object):
"""Inference class for DrugGEN."""
def __init__(self, config):
if config.set_seed:
np.random.seed(config.seed)
random.seed(config.seed)
torch.manual_seed(config.seed)
torch.cuda.manual_seed_all(config.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ["PYTHONHASHSEED"] = str(config.seed)
print(f'Using seed {config.seed}')
self.device = torch.device("cuda" if torch.cuda.is_available() else 'cpu')
# Initialize configurations
self.submodel = config.submodel
self.inference_model = config.inference_model
self.sample_num = config.sample_num
self.disable_correction = config.disable_correction
# Data loader.
self.inf_smiles = config.inf_smiles # SMILES containing text file for first dataset.
# Write the full path to file.
inf_smiles_basename = osp.basename(self.inf_smiles)
# Get the base name without extension and add max_atom to it
self.max_atom = config.max_atom # Model is based on one-shot generation.
inf_smiles_base = os.path.splitext(inf_smiles_basename)[0]
# Change extension from .smi to .pt and add max_atom to the filename
self.inf_dataset_file = f"{inf_smiles_base}{self.max_atom}.pt"
self.inf_batch_size = config.inf_batch_size
self.train_smiles = config.train_smiles
self.train_drug_smiles = config.train_drug_smiles
self.mol_data_dir = config.mol_data_dir # Directory where the dataset files are stored.
self.dataset_name = self.inf_dataset_file.split(".")[0]
self.features = config.features # Small model uses atom types as node features. (Boolean, False uses atom types only.)
# Additional node features can be added. Please check new_dataloarder.py Line 102.
# Get atom and bond encoders/decoders
self.atom_encoder, self.atom_decoder, self.bond_encoder, self.bond_decoder = get_encoders_decoders(
self.train_smiles,
self.train_drug_smiles,
self.max_atom
)
self.inf_dataset = DruggenDataset(self.mol_data_dir,
self.inf_dataset_file,
self.inf_smiles,
self.max_atom,
self.features,
atom_encoder=self.atom_encoder,
atom_decoder=self.atom_decoder,
bond_encoder=self.bond_encoder,
bond_decoder=self.bond_decoder)
self.inf_loader = DataLoader(self.inf_dataset,
shuffle=True,
batch_size=self.inf_batch_size,
drop_last=True) # PyG dataloader for the first GAN.
self.m_dim = len(self.atom_decoder) if not self.features else int(self.inf_loader.dataset[0].x.shape[1]) # Atom type dimension.
self.b_dim = len(self.bond_decoder) # Bond type dimension.
self.vertexes = int(self.inf_loader.dataset[0].x.shape[0]) # Number of nodes in the graph.
# Model configurations.
self.act = config.act
self.dim = config.dim
self.depth = config.depth
self.heads = config.heads
self.mlp_ratio = config.mlp_ratio
self.dropout = config.dropout
self.build_model()
def build_model(self):
"""Create generators and discriminators."""
self.G = Generator(self.act,
self.vertexes,
self.b_dim,
self.m_dim,
self.dropout,
dim=self.dim,
depth=self.depth,
heads=self.heads,
mlp_ratio=self.mlp_ratio)
self.G.to(self.device)
self.print_network(self.G, 'G')
def print_network(self, model, name):
"""Print out the network information."""
num_params = 0
for p in model.parameters():
num_params += p.numel()
print(model)
print(name)
print("The number of parameters: {}".format(num_params))
def restore_model(self, submodel, model_directory):
"""Restore the trained generator and discriminator."""
print('Loading the model...')
G_path = os.path.join(model_directory, '{}-G.ckpt'.format(submodel))
self.G.load_state_dict(torch.load(G_path, map_location=lambda storage, loc: storage, weights_only=False))
def inference(self):
# Load the trained generator.
self.restore_model(self.submodel, self.inference_model)
# smiles data for metrics calculation.
chembl_smiles = [line for line in open(self.train_smiles, 'r').read().splitlines()]
chembl_test = [line for line in open(self.inf_smiles, 'r').read().splitlines()]
drug_smiles = [line for line in open(self.train_drug_smiles, 'r').read().splitlines()]
drug_mols = [Chem.MolFromSmiles(smi) for smi in drug_smiles]
drug_vecs = [AllChem.GetMorganFingerprintAsBitVect(x, 2, nBits=1024) for x in drug_mols if x is not None]
# Make directories if not exist.
if not os.path.exists("experiments/inference/{}".format(self.submodel)):
os.makedirs("experiments/inference/{}".format(self.submodel))
if not self.disable_correction:
correct = smi_correct(self.submodel, "experiments/inference/{}".format(self.submodel))
search_res = pd.DataFrame(columns=["submodel", "validity",
"uniqueness", "novelty",
"novelty_test", "drug_novelty",
"max_len", "mean_atom_type",
"snn_chembl", "snn_drug", "IntDiv", "qed", "sa"])
self.G.eval()
start_time = time.time()
metric_calc_dr = []
uniqueness_calc = []
real_smiles_snn = []
nodes_sample = torch.Tensor(size=[1, self.vertexes, 1]).to(self.device)
generated_smiles = []
val_counter = 0
none_counter = 0
# Inference mode
with torch.inference_mode():
pbar = tqdm(range(self.sample_num))
pbar.set_description('Inference mode for {} model started'.format(self.submodel))
for i, data in enumerate(self.inf_loader):
val_counter += 1
# Preprocess dataset
_, a_tensor, x_tensor = load_molecules(
data=data,
batch_size=self.inf_batch_size,
device=self.device,
b_dim=self.b_dim,
m_dim=self.m_dim,
)
_, _, node_sample, edge_sample = self.G(a_tensor, x_tensor)
g_edges_hat_sample = torch.max(edge_sample, -1)[1]
g_nodes_hat_sample = torch.max(node_sample, -1)[1]
fake_mol_g = [self.inf_dataset.matrices2mol(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=False, file_name=self.dataset_name)
for e_, n_ in zip(g_edges_hat_sample, g_nodes_hat_sample)]
a_tensor_sample = torch.max(a_tensor, -1)[1]
x_tensor_sample = torch.max(x_tensor, -1)[1]
real_mols = [self.inf_dataset.matrices2mol(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=True, file_name=self.dataset_name)
for e_, n_ in zip(a_tensor_sample, x_tensor_sample)]
inference_drugs = [None if line is None else Chem.MolToSmiles(line) for line in fake_mol_g]
inference_drugs = [None if x is None else max(x.split('.'), key=len) for x in inference_drugs]
for molecules in inference_drugs:
if molecules is None:
none_counter += 1
for molecules in inference_drugs:
if molecules is not None:
molecules = molecules.replace("*", "C")
generated_smiles.append(molecules)
uniqueness_calc.append(molecules)
nodes_sample = torch.cat((nodes_sample, g_nodes_hat_sample.view(1, self.vertexes, 1)), 0)
pbar.update(1)
metric_calc_dr.append(molecules)
real_smiles_snn.append(real_mols[0])
generation_number = len([x for x in metric_calc_dr if x is not None])
if generation_number == self.sample_num or none_counter == self.sample_num:
break
if not self.disable_correction:
correct = smi_correct(self.submodel, "experiments/inference/{}".format(self.submodel))
gen_smi = correct.correct_smiles_list(generated_smiles)
else:
gen_smi = generated_smiles
et = time.time() - start_time
gen_vecs = [AllChem.GetMorganFingerprintAsBitVect(Chem.MolFromSmiles(x), 2, nBits=1024) for x in uniqueness_calc if Chem.MolFromSmiles(x) is not None]
real_vecs = [AllChem.GetMorganFingerprintAsBitVect(x, 2, nBits=1024) for x in real_smiles_snn if x is not None]
if not self.disable_correction:
val = round(len(gen_smi)/self.sample_num, 3)
else:
val = round(fraction_valid(gen_smi), 3)
uniq = round(fraction_unique(gen_smi), 3)
nov = round(novelty(gen_smi, chembl_smiles), 3)
nov_test = round(novelty(gen_smi, chembl_test), 3)
drug_nov = round(novelty(gen_smi, drug_smiles), 3)
max_len = round(Metrics.max_component(gen_smi, self.vertexes), 3)
mean_atom = round(Metrics.mean_atom_type(nodes_sample), 3)
snn_chembl = round(average_agg_tanimoto(np.array(real_vecs), np.array(gen_vecs)), 3)
snn_drug = round(average_agg_tanimoto(np.array(drug_vecs), np.array(gen_vecs)), 3)
int_div = round((internal_diversity(np.array(gen_vecs)))[0], 3)
qed = round(np.mean([QED.qed(Chem.MolFromSmiles(x)) for x in gen_smi if Chem.MolFromSmiles(x) is not None]), 3)
sa = round(np.mean([sascorer.calculateScore(Chem.MolFromSmiles(x)) for x in gen_smi if Chem.MolFromSmiles(x) is not None]), 3)
model_res = pd.DataFrame({"submodel": [self.submodel], "validity": [val],
"uniqueness": [uniq], "novelty": [nov],
"novelty_test": [nov_test], "drug_novelty": [drug_nov],
"max_len": [max_len], "mean_atom_type": [mean_atom],
"snn_chembl": [snn_chembl], "snn_drug": [snn_drug],
"IntDiv": [int_div], "qed": [qed], "sa": [sa]})
# Write generated SMILES to a temporary file for app.py to use
temp_file = f'{self.submodel}_denovo_mols.smi'
with open(temp_file, 'w') as f:
f.write("SMILES\n")
for smiles in gen_smi:
f.write(f"{smiles}\n")
return model_res
if __name__=="__main__":
parser = argparse.ArgumentParser()
# Inference configuration.
parser.add_argument('--submodel', type=str, default="DrugGEN", help="Chose model subtype: DrugGEN, NoTarget", choices=['DrugGEN', 'NoTarget'])
parser.add_argument('--inference_model', type=str, help="Path to the model for inference")
parser.add_argument('--sample_num', type=int, default=100, help='inference samples')
parser.add_argument('--disable_correction', action='store_true', help='Disable SMILES correction')
# Data configuration.
parser.add_argument('--inf_smiles', type=str, required=True)
parser.add_argument('--train_smiles', type=str, required=True)
parser.add_argument('--train_drug_smiles', type=str, required=True)
parser.add_argument('--inf_batch_size', type=int, default=1, help='Batch size for inference')
parser.add_argument('--mol_data_dir', type=str, default='data')
parser.add_argument('--features', action='store_true', help='features dimension for nodes')
# Model configuration.
parser.add_argument('--act', type=str, default="relu", help="Activation function for the model.", choices=['relu', 'tanh', 'leaky', 'sigmoid'])
parser.add_argument('--max_atom', type=int, default=45, help='Max atom number for molecules must be specified.')
parser.add_argument('--dim', type=int, default=128, help='Dimension of the Transformer Encoder model for the GAN.')
parser.add_argument('--depth', type=int, default=1, help='Depth of the Transformer model from the GAN.')
parser.add_argument('--heads', type=int, default=8, help='Number of heads for the MultiHeadAttention module from the GAN.')
parser.add_argument('--mlp_ratio', type=int, default=3, help='MLP ratio for the Transformer.')
parser.add_argument('--dropout', type=float, default=0., help='dropout rate')
# Seed configuration.
parser.add_argument('--set_seed', action='store_true', help='set seed for reproducibility')
parser.add_argument('--seed', type=int, default=1, help='seed for reproducibility')
config = parser.parse_args()
inference = Inference(config)
inference.inference()