File size: 7,675 Bytes
24c5c6a
 
 
 
301ba09
 
 
8aa6c67
24c5c6a
 
 
 
 
301ba09
 
 
 
24c5c6a
 
 
126dbe4
24c5c6a
 
 
 
 
301ba09
24c5c6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8aa6c67
 
301ba09
 
24c5c6a
301ba09
24c5c6a
 
 
301ba09
 
 
 
 
 
 
 
 
24c5c6a
 
 
 
 
301ba09
24c5c6a
301ba09
24c5c6a
 
301ba09
24c5c6a
 
301ba09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8aa6c67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83d87f5
8aa6c67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
301ba09
8aa6c67
301ba09
 
 
8aa6c67
 
301ba09
8aa6c67
301ba09
 
 
 
 
8aa6c67
301ba09
 
 
 
 
 
 
 
 
 
 
 
8aa6c67
 
301ba09
 
 
8aa6c67
301ba09
 
 
 
8aa6c67
 
301ba09
 
24c5c6a
301ba09
 
 
24c5c6a
301ba09
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import torch
from torch.nn import Linear
from torch_geometric.nn import HGTConv, MLP
import pandas as pd
import yaml
import os
from datasets import load_dataset
import gdown

class ProtHGT(torch.nn.Module):
    def __init__(self, data,hidden_channels, num_heads, num_layers, mlp_hidden_layers, mlp_dropout):
        super().__init__()

        self.lin_dict = torch.nn.ModuleDict()
        for node_type in data.node_types:
            input_dim = data[node_type].x.size(1)  # Get actual input dimension from data
            self.lin_dict[node_type] = Linear(input_dim, hidden_channels)

        self.convs = torch.nn.ModuleList()
        for _ in range(num_layers):
            conv = HGTConv(hidden_channels, hidden_channels, data.metadata(), num_heads, group='sum')
            self.convs.append(conv)
        
        self.mlp = MLP(mlp_hidden_layers , dropout=mlp_dropout, norm=None)

    def generate_embeddings(self, x_dict, edge_index_dict):
        # Generate updated embeddings through the HGT layers
        x_dict = {
            node_type: self.lin_dict[node_type](x).relu_()
            for node_type, x in x_dict.items()
        }

        for conv in self.convs:
            x_dict = conv(x_dict, edge_index_dict)
            
        return x_dict

    def forward(self, x_dict, edge_index_dict, tr_edge_label_index, target_type, test=False):
        # Get updated embeddings
        x_dict = self.generate_embeddings(x_dict, edge_index_dict)

        # Make predictions
        row, col = tr_edge_label_index
        z = torch.cat([x_dict["Protein"][row], x_dict[target_type][col]], dim=-1)

        return self.mlp(z).view(-1), x_dict

def _load_data(heterodata, protein_ids, go_category=None):
    """Process the loaded heterodata for specific proteins and GO categories."""
    # Get protein indices for all input proteins
    protein_indices = [heterodata['Protein']['id_mapping'][pid] for pid in protein_ids]
    
    # Create edge indices for prediction
    categories = [go_category] if go_category else ['GO_term_F', 'GO_term_P', 'GO_term_C']
    
    for category in categories:
        # Create pairs for all proteins with all GO terms
        n_terms = len(heterodata[category]['id_mapping'])
        protein_indices_repeated = torch.tensor(protein_indices).repeat_interleave(n_terms)
        term_indices = torch.arange(n_terms).repeat(len(protein_indices))
        
        edge_index = torch.stack([protein_indices_repeated, term_indices])
        heterodata.edge_index_dict[('Protein', 'protein_function', category)] = edge_index

    return heterodata

def get_available_proteins(protein_list_file='data/available_proteins.txt'):
    with open(protein_list_file, 'r') as file:
        return [line.strip() for line in file.readlines()]

def _generate_predictions(heterodata, model, target_type):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    model.to(device)
    model.eval()
    heterodata = heterodata.to(device)

    with torch.no_grad():
        edge_label_index = heterodata.edge_index_dict[('Protein', 'protein_function', target_type)]
        predictions, _ = model(heterodata.x_dict, heterodata.edge_index_dict, edge_label_index, target_type)
        predictions = torch.sigmoid(predictions)
    
    return predictions.cpu()

def _create_prediction_df(predictions, heterodata, protein_ids, go_category):
    go_category_dict = {
        'GO_term_F': 'Molecular Function',
        'GO_term_P': 'Biological Process',
        'GO_term_C': 'Cellular Component'
    }
    # Create a list to store individual protein predictions
    all_predictions = []
    
    # Number of GO terms for this category
    n_go_terms = len(heterodata[go_category]['id_mapping'])
    
    # Process predictions for each protein
    for i, protein_id in enumerate(protein_ids):
        # Get the slice of predictions for this protein
        protein_predictions = predictions[i * n_go_terms:(i + 1) * n_go_terms]
        
        prediction_df = pd.DataFrame({
            'Protein': protein_id,
            'GO_category': go_category_dict[go_category],
            'GO_term': list(heterodata[go_category]['id_mapping'].keys()),
            'Probability': protein_predictions.numpy()
        })
        all_predictions.append(prediction_df)
    
    # Combine all predictions
    combined_df = pd.concat(all_predictions, ignore_index=True)
    combined_df.sort_values(by=['Protein', 'Probability'], ascending=[True, False], inplace=True)
    combined_df.reset_index(drop=True, inplace=True)
    return combined_df

def generate_prediction_df(protein_ids, model_paths, model_config_paths, go_category):
    all_predictions = []
    
    # Convert single protein ID to list if necessary
    if isinstance(protein_ids, str):
        protein_ids = [protein_ids]

    # Load dataset once
    # heterodata = load_dataset('HUBioDataLab/ProtHGT-KG', data_files="prothgt-kg.json.gz")
    print('Loading data...')
    file_id = "18u1o2sm8YjMo9joFw4Ilwvg0-rUU0PXK"
    output = "data/prothgt-kg.pt"

    url = f"https://drive.google.com/uc?id={file_id}"
    print(f"Downloading file from {url}...")
    try:
        gdown.download(url, output, quiet=False)
        print(f"File downloaded to {output}")
    except Exception as e:
        print(f"Error downloading file: {e}")
        raise

    heterodata = torch.load(output)
    print(heterodata.edge_types)
    
    # Remove unnecessary edge types
    edge_types_to_remove = [
        ('Protein', 'protein_function', 'GO_term_F'),
        ('Protein', 'protein_function', 'GO_term_P'),
        ('Protein', 'protein_function', 'GO_term_C'),
        ('GO_term_F', 'rev_protein_function', 'Protein'),
        ('GO_term_P', 'rev_protein_function', 'Protein'),
        ('GO_term_C', 'rev_protein_function', 'Protein')
    ]
    
    for edge_type in edge_types_to_remove:
        if edge_type in heterodata.edge_index_dict:
            del heterodata.edge_index_dict[edge_type]

    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    for go_cat, model_config_path, model_path in zip(go_category, model_config_paths, model_paths):
        print(f'Generating predictions for {go_cat}...')
            
        # Process data for current GO category
        processed_data = _load_data(heterodata, protein_ids, go_cat)
        
        # Load model config
        with open(model_config_path, 'r') as file:
            model_config = yaml.safe_load(file)
        
        # Initialize model with configuration
        model = ProtHGT(
            processed_data,
            hidden_channels=model_config['hidden_channels'][0],
            num_heads=model_config['num_heads'],
            num_layers=model_config['num_layers'],
            mlp_hidden_layers=model_config['hidden_channels'][1],
            mlp_dropout=model_config['mlp_dropout']
        )
        
        # Load model weights
        model.load_state_dict(torch.load(model_path, map_location=device))
        print(f'Loaded model weights from {model_path}')
        
        # Generate predictions
        predictions = _generate_predictions(processed_data, model, go_cat)
        prediction_df = _create_prediction_df(predictions, processed_data, protein_ids, go_cat)
        all_predictions.append(prediction_df)
        
        # Clean up memory
        del processed_data
        del model
        del predictions
        torch.cuda.empty_cache()  # Clear CUDA cache if using GPU

    del heterodata

    # Combine all predictions
    final_df = pd.concat(all_predictions, ignore_index=True)
    
    # Clean up
    del all_predictions
    torch.cuda.empty_cache()
    
    return final_df