Erva Ulusoy commited on
Commit
41634be
·
1 Parent(s): dcb3584

fixed numpy error added time calc for env setup

Browse files
Files changed (2) hide show
  1. ProtHGT_app.py +7 -5
  2. run_prothgt_app.py +1 -1
ProtHGT_app.py CHANGED
@@ -1,18 +1,20 @@
1
  import os
2
  import streamlit as st
 
 
 
 
3
 
4
  with st.spinner("Please wait while we prepare the environment. This may take a few minutes only on the first run..."):
5
  # Run setup script if not already executed
6
  if not os.path.exists(".setup_done"):
 
7
  os.system("bash setup.sh")
 
 
8
  with open(".setup_done", "w") as f:
9
  f.write("done")
10
 
11
- import streamlit.components.v1 as components
12
- import os
13
- import time
14
- import pandas as pd
15
-
16
  from run_prothgt_app import *
17
 
18
  def convert_df(df):
 
1
  import os
2
  import streamlit as st
3
+ import time
4
+ import streamlit.components.v1 as components
5
+ import pandas as pd
6
+
7
 
8
  with st.spinner("Please wait while we prepare the environment. This may take a few minutes only on the first run..."):
9
  # Run setup script if not already executed
10
  if not os.path.exists(".setup_done"):
11
+ start_time = time.time()
12
  os.system("bash setup.sh")
13
+ end_time = time.time()
14
+ st.success(f"Environment prepared in {end_time - start_time:.2f} seconds")
15
  with open(".setup_done", "w") as f:
16
  f.write("done")
17
 
 
 
 
 
 
18
  from run_prothgt_app import *
19
 
20
  def convert_df(df):
run_prothgt_app.py CHANGED
@@ -103,7 +103,7 @@ def _create_prediction_df(predictions, heterodata, protein_ids, go_category):
103
  'Protein': protein_id,
104
  'GO_category': go_category_dict[go_category],
105
  'GO_term': list(heterodata[go_category]['id_mapping'].keys()),
106
- 'Probability': protein_predictions.numpy()
107
  })
108
  all_predictions.append(prediction_df)
109
 
 
103
  'Protein': protein_id,
104
  'GO_category': go_category_dict[go_category],
105
  'GO_term': list(heterodata[go_category]['id_mapping'].keys()),
106
+ 'Probability': protein_predictions.tolist()
107
  })
108
  all_predictions.append(prediction_df)
109