Spaces:
Running
Running
Erva Ulusoy
commited on
Commit
·
8f4b741
1
Parent(s):
dbed3d3
added kg visualization feature
Browse files- ProtHGT_app.py +288 -171
- requirements.txt +2 -1
- run_prothgt_app.py +3 -4
- visualize_kg.py +242 -0
ProtHGT_app.py
CHANGED
@@ -25,8 +25,8 @@ import random
|
|
25 |
# # ❌ Remove the info message after initialization is complete
|
26 |
# loading_placeholder.empty()
|
27 |
|
28 |
-
|
29 |
from run_prothgt_app import *
|
|
|
30 |
|
31 |
def convert_df(df):
|
32 |
return df.to_csv(index=False).encode('utf-8')
|
@@ -34,19 +34,31 @@ def convert_df(df):
|
|
34 |
# Initialize session state variables
|
35 |
if 'predictions_df' not in st.session_state:
|
36 |
st.session_state.predictions_df = None
|
|
|
|
|
37 |
if 'submitted' not in st.session_state:
|
38 |
st.session_state.submitted = False
|
39 |
if 'previous_inputs' not in st.session_state:
|
40 |
st.session_state.previous_inputs = None
|
41 |
-
# Initialize session state variables
|
42 |
if 'generating_predictions' not in st.session_state:
|
43 |
st.session_state.generating_predictions = False
|
|
|
|
|
|
|
44 |
|
45 |
def reset_prediction_state():
|
46 |
st.session_state.generating_predictions = False
|
47 |
st.session_state.submitted = False
|
48 |
st.session_state.predictions_df = None
|
49 |
st.session_state.previous_inputs = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
def set_generating_predictions():
|
52 |
st.session_state.generating_predictions = True
|
@@ -130,7 +142,6 @@ with st.sidebar:
|
|
130 |
)
|
131 |
|
132 |
elif selection_method == "Search proteins":
|
133 |
-
|
134 |
# User enters search term
|
135 |
search_query = st.text_input(
|
136 |
"1\\. Start typing a protein ID (at least 3 characters) and press Enter to see search results in the dropdown menu below (2)",
|
@@ -138,6 +149,10 @@ with st.sidebar:
|
|
138 |
disabled=disabled
|
139 |
)
|
140 |
|
|
|
|
|
|
|
|
|
141 |
# Apply fuzzy search only if query length is >= 3
|
142 |
filtered_proteins = []
|
143 |
if len(search_query) >= 3:
|
@@ -150,14 +165,22 @@ with st.sidebar:
|
|
150 |
filtered_proteins = [match[0] for match in matches] # Show top 50 matches
|
151 |
|
152 |
with st.container():
|
|
|
|
|
|
|
153 |
selected_proteins = st.multiselect(
|
154 |
"2\\. Select proteins from search results",
|
155 |
-
options=
|
|
|
156 |
placeholder="Start typing a protein ID above (1) to see search results...",
|
157 |
max_selections=100,
|
158 |
disabled=disabled,
|
159 |
key="protein_selector"
|
160 |
)
|
|
|
|
|
|
|
|
|
161 |
# Apply custom CSS to make container scrollable
|
162 |
st.markdown("""
|
163 |
<style>
|
@@ -167,7 +190,7 @@ with st.sidebar:
|
|
167 |
}
|
168 |
</style>
|
169 |
""", unsafe_allow_html=True)
|
170 |
-
|
171 |
else: # Upload file option
|
172 |
uploaded_file = st.file_uploader(
|
173 |
"Upload a text file with UniProt IDs (one per line, max 100)*",
|
@@ -328,193 +351,287 @@ if st.session_state.submitted:
|
|
328 |
go_categories = ['GO_term_F', 'GO_term_P', 'GO_term_C']
|
329 |
|
330 |
# Generate predictions
|
331 |
-
predictions_df = generate_prediction_df(
|
332 |
protein_ids=selected_proteins,
|
333 |
model_paths=model_paths,
|
334 |
model_config_paths=model_config_paths,
|
335 |
go_category=go_categories
|
336 |
)
|
337 |
|
|
|
338 |
st.session_state.predictions_df = predictions_df
|
339 |
-
|
340 |
# Reset only the generating_predictions flag to release the sidebar
|
341 |
st.session_state.generating_predictions = False
|
342 |
st.rerun()
|
343 |
|
344 |
# Display and filter predictions
|
345 |
st.success("Predictions generated successfully!")
|
346 |
-
st.markdown("### Filter and View Predictions")
|
347 |
-
|
348 |
-
# Create filters
|
349 |
-
col1, col2, col3, col4 = st.columns(4)
|
350 |
-
|
351 |
-
with col1:
|
352 |
-
# Extract UniProt IDs from URLs for the selectbox
|
353 |
-
uniprot_ids = st.session_state.predictions_df['UniProt_ID'].apply(
|
354 |
-
lambda x: x.split('/')[-2] # Gets the ID part from the URL
|
355 |
-
).unique().tolist()
|
356 |
-
|
357 |
-
# Protein filter
|
358 |
-
selected_protein = st.selectbox(
|
359 |
-
"Filter by Protein",
|
360 |
-
options=['All'] + sorted(uniprot_ids)
|
361 |
-
)
|
362 |
|
363 |
-
|
364 |
-
|
365 |
-
selected_category = st.selectbox(
|
366 |
-
"Filter by GO Category",
|
367 |
-
options=['All'] + sorted(st.session_state.predictions_df['GO_category'].unique().tolist())
|
368 |
-
)
|
369 |
|
370 |
-
with
|
371 |
-
|
372 |
-
go_term_filter = st.text_input(
|
373 |
-
"Filter by GO Term ID",
|
374 |
-
placeholder="e.g., GO:0003674",
|
375 |
-
help="Enter a GO term ID to filter results"
|
376 |
-
).strip()
|
377 |
|
378 |
-
with col4:
|
379 |
-
# Probability threshold
|
380 |
-
min_probability_threshold = st.slider(
|
381 |
-
"Minimum Probability",
|
382 |
-
min_value=0.0,
|
383 |
-
max_value=1.0,
|
384 |
-
value=0.5,
|
385 |
-
step=0.05
|
386 |
-
)
|
387 |
|
388 |
-
|
389 |
-
|
390 |
-
min_value=0.0,
|
391 |
-
max_value=1.0,
|
392 |
-
value=1.0,
|
393 |
-
step=0.05
|
394 |
-
)
|
395 |
-
|
396 |
-
# Filter the dataframe using session state data
|
397 |
-
filtered_df = st.session_state.predictions_df.copy()
|
398 |
-
|
399 |
-
if selected_protein != 'All':
|
400 |
-
filtered_df = filtered_df[filtered_df['UniProt_ID'].str.contains(selected_protein)]
|
401 |
-
|
402 |
-
if selected_category != 'All':
|
403 |
-
filtered_df = filtered_df[filtered_df['GO_category'] == selected_category]
|
404 |
-
|
405 |
-
if go_term_filter:
|
406 |
-
filtered_df = filtered_df[filtered_df['GO_ID'].str.contains(go_term_filter, case=False, na=False)]
|
407 |
|
408 |
-
|
409 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
410 |
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
.
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
423 |
}
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
|
|
438 |
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
"
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
)
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
"GO_category": st.column_config.TextColumn(
|
483 |
-
"GO Category",
|
484 |
-
help="Gene Ontology Category",
|
485 |
-
),
|
486 |
-
"GO_term": st.column_config.TextColumn(
|
487 |
-
"GO Term",
|
488 |
-
help="Gene Ontology Term Name",
|
489 |
-
),
|
490 |
-
}
|
491 |
-
)
|
492 |
-
# Pagination controls with better layout
|
493 |
-
col1, col2, col3 = st.columns([1, 3, 1])
|
494 |
-
with col1:
|
495 |
-
if st.button("Previous", disabled=st.session_state.page_number == 0):
|
496 |
-
st.session_state.page_number -= 1
|
497 |
-
st.rerun()
|
498 |
-
|
499 |
-
with col2:
|
500 |
-
st.markdown(f"""
|
501 |
-
<div class="pagination-info" style="text-align: center">
|
502 |
-
Page {st.session_state.page_number + 1} of {total_pages}<br>
|
503 |
-
Showing rows {start_idx + 1} to {end_idx} of {total_rows}
|
504 |
-
</div>
|
505 |
-
""", unsafe_allow_html=True)
|
506 |
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
511 |
|
512 |
|
513 |
-
|
514 |
-
|
515 |
-
label="Download Filtered Results",
|
516 |
-
data=convert_df(filtered_df),
|
517 |
-
file_name="filtered_predictions.csv",
|
518 |
-
mime="text/csv",
|
519 |
-
key="download_filtered_predictions"
|
520 |
-
)
|
|
|
25 |
# # ❌ Remove the info message after initialization is complete
|
26 |
# loading_placeholder.empty()
|
27 |
|
|
|
28 |
from run_prothgt_app import *
|
29 |
+
from visualize_kg import *
|
30 |
|
31 |
def convert_df(df):
|
32 |
return df.to_csv(index=False).encode('utf-8')
|
|
|
34 |
# Initialize session state variables
|
35 |
if 'predictions_df' not in st.session_state:
|
36 |
st.session_state.predictions_df = None
|
37 |
+
if 'heterodata' not in st.session_state:
|
38 |
+
st.session_state.heterodata = None
|
39 |
if 'submitted' not in st.session_state:
|
40 |
st.session_state.submitted = False
|
41 |
if 'previous_inputs' not in st.session_state:
|
42 |
st.session_state.previous_inputs = None
|
|
|
43 |
if 'generating_predictions' not in st.session_state:
|
44 |
st.session_state.generating_predictions = False
|
45 |
+
if 'protein_visualizations' not in st.session_state:
|
46 |
+
st.session_state.protein_visualizations = {}
|
47 |
+
|
48 |
|
49 |
def reset_prediction_state():
|
50 |
st.session_state.generating_predictions = False
|
51 |
st.session_state.submitted = False
|
52 |
st.session_state.predictions_df = None
|
53 |
st.session_state.previous_inputs = None
|
54 |
+
# Clean up visualization files
|
55 |
+
if 'protein_visualizations' in st.session_state:
|
56 |
+
for viz_info in st.session_state.protein_visualizations.values():
|
57 |
+
try:
|
58 |
+
os.unlink(viz_info['path'])
|
59 |
+
except:
|
60 |
+
pass
|
61 |
+
st.session_state.protein_visualizations = {}
|
62 |
|
63 |
def set_generating_predictions():
|
64 |
st.session_state.generating_predictions = True
|
|
|
142 |
)
|
143 |
|
144 |
elif selection_method == "Search proteins":
|
|
|
145 |
# User enters search term
|
146 |
search_query = st.text_input(
|
147 |
"1\\. Start typing a protein ID (at least 3 characters) and press Enter to see search results in the dropdown menu below (2)",
|
|
|
149 |
disabled=disabled
|
150 |
)
|
151 |
|
152 |
+
# Initialize selected_proteins in session state if not exists
|
153 |
+
if 'selected_proteins_search' not in st.session_state:
|
154 |
+
st.session_state.selected_proteins_search = []
|
155 |
+
|
156 |
# Apply fuzzy search only if query length is >= 3
|
157 |
filtered_proteins = []
|
158 |
if len(search_query) >= 3:
|
|
|
165 |
filtered_proteins = [match[0] for match in matches] # Show top 50 matches
|
166 |
|
167 |
with st.container():
|
168 |
+
# Include previously selected proteins in options
|
169 |
+
all_options = list(set(filtered_proteins + st.session_state.selected_proteins_search))
|
170 |
+
|
171 |
selected_proteins = st.multiselect(
|
172 |
"2\\. Select proteins from search results",
|
173 |
+
options=all_options,
|
174 |
+
default=st.session_state.selected_proteins_search,
|
175 |
placeholder="Start typing a protein ID above (1) to see search results...",
|
176 |
max_selections=100,
|
177 |
disabled=disabled,
|
178 |
key="protein_selector"
|
179 |
)
|
180 |
+
|
181 |
+
# Update session state with current selection
|
182 |
+
st.session_state.selected_proteins_search = selected_proteins
|
183 |
+
|
184 |
# Apply custom CSS to make container scrollable
|
185 |
st.markdown("""
|
186 |
<style>
|
|
|
190 |
}
|
191 |
</style>
|
192 |
""", unsafe_allow_html=True)
|
193 |
+
|
194 |
else: # Upload file option
|
195 |
uploaded_file = st.file_uploader(
|
196 |
"Upload a text file with UniProt IDs (one per line, max 100)*",
|
|
|
351 |
go_categories = ['GO_term_F', 'GO_term_P', 'GO_term_C']
|
352 |
|
353 |
# Generate predictions
|
354 |
+
heterodata, predictions_df = generate_prediction_df(
|
355 |
protein_ids=selected_proteins,
|
356 |
model_paths=model_paths,
|
357 |
model_config_paths=model_config_paths,
|
358 |
go_category=go_categories
|
359 |
)
|
360 |
|
361 |
+
st.session_state.heterodata = heterodata
|
362 |
st.session_state.predictions_df = predictions_df
|
363 |
+
|
364 |
# Reset only the generating_predictions flag to release the sidebar
|
365 |
st.session_state.generating_predictions = False
|
366 |
st.rerun()
|
367 |
|
368 |
# Display and filter predictions
|
369 |
st.success("Predictions generated successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
|
371 |
+
# tabs for predictions and visualizations
|
372 |
+
predictions_tab, kg_viz_tab = st.tabs(["View Predictions", "View Knowledge Graphs"])
|
|
|
|
|
|
|
|
|
373 |
|
374 |
+
with predictions_tab:
|
375 |
+
st.markdown("### Filter and View Predictions")
|
|
|
|
|
|
|
|
|
|
|
376 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
377 |
|
378 |
+
# Create filters
|
379 |
+
col1, col2, col3, col4 = st.columns(4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
380 |
|
381 |
+
with col1:
|
382 |
+
# Extract UniProt IDs from URLs for the selectbox
|
383 |
+
uniprot_ids = st.session_state.predictions_df['UniProt_ID'].unique().tolist()
|
384 |
+
|
385 |
+
# Protein filter
|
386 |
+
selected_protein = st.selectbox(
|
387 |
+
"Filter by Protein",
|
388 |
+
options=['All'] + sorted(uniprot_ids)
|
389 |
+
)
|
390 |
+
|
391 |
+
with col2:
|
392 |
+
# GO category filter
|
393 |
+
selected_category = st.selectbox(
|
394 |
+
"Filter by GO Category",
|
395 |
+
options=['All'] + sorted(st.session_state.predictions_df['GO_category'].unique().tolist())
|
396 |
+
)
|
397 |
+
|
398 |
+
with col3:
|
399 |
+
# GO term filter
|
400 |
+
go_term_filter = st.text_input(
|
401 |
+
"Filter by GO Term ID",
|
402 |
+
placeholder="e.g., GO:0003674",
|
403 |
+
help="Enter a GO term ID to filter results"
|
404 |
+
).strip()
|
405 |
+
|
406 |
+
with col4:
|
407 |
+
# Probability threshold range slider
|
408 |
+
probability_range = st.slider(
|
409 |
+
"Probability Range",
|
410 |
+
min_value=0.0,
|
411 |
+
max_value=1.0,
|
412 |
+
value=(0.5, 1.0), # (min, max) default values
|
413 |
+
step=0.05
|
414 |
+
)
|
415 |
+
min_probability_threshold, max_probability_threshold = probability_range
|
416 |
+
|
417 |
+
# Filter the dataframe using session state data
|
418 |
+
filtered_df = st.session_state.predictions_df.copy()
|
419 |
+
|
420 |
+
if selected_protein != 'All':
|
421 |
+
filtered_df = filtered_df[filtered_df['UniProt_ID'].str.contains(selected_protein)]
|
422 |
+
|
423 |
+
if selected_category != 'All':
|
424 |
+
filtered_df = filtered_df[filtered_df['GO_category'] == selected_category]
|
425 |
+
|
426 |
+
if go_term_filter:
|
427 |
+
filtered_df = filtered_df[filtered_df['GO_ID'] == go_term_filter]
|
428 |
+
|
429 |
+
filtered_df = filtered_df[(filtered_df['Probability'] >= min_probability_threshold) &
|
430 |
+
(filtered_df['Probability'] <= max_probability_threshold)]
|
431 |
+
|
432 |
+
filtered_df['UniProt_ID'] = [f"https://www.uniprot.org/uniprotkb/{pid}/entry" for pid in filtered_df['UniProt_ID']]
|
433 |
+
filtered_df['GO_ID'] = [f"https://www.ebi.ac.uk/QuickGO/term/{go_id}" for go_id in filtered_df['GO_ID']]
|
434 |
+
|
435 |
+
# Custom CSS to increase table width and improve layout
|
436 |
+
st.markdown("""
|
437 |
+
<style>
|
438 |
+
.stDataFrame {
|
439 |
+
width: 100%;
|
440 |
+
}
|
441 |
+
.stDataFrame > div {
|
442 |
+
width: 100%;
|
443 |
+
}
|
444 |
+
.stDataFrame [data-testid="stDataFrameResizable"] {
|
445 |
+
width: 100%;
|
446 |
+
min-width: 100%;
|
447 |
+
}
|
448 |
+
.pagination-info {
|
449 |
+
font-size: 14px;
|
450 |
+
color: #666;
|
451 |
+
padding: 10px 0;
|
452 |
+
}
|
453 |
+
.page-controls {
|
454 |
+
display: flex;
|
455 |
+
align-items: center;
|
456 |
+
justify-content: center;
|
457 |
+
gap: 20px;
|
458 |
+
padding: 10px 0;
|
459 |
+
}
|
460 |
+
</style>
|
461 |
+
""", unsafe_allow_html=True)
|
462 |
|
463 |
+
# Add pagination controls
|
464 |
+
col1, col2, col3 = st.columns([2, 1, 2])
|
465 |
+
with col2:
|
466 |
+
rows_per_page = st.selectbox("Rows per page", [50, 100, 200, 500], index=1)
|
467 |
+
|
468 |
+
total_rows = len(filtered_df)
|
469 |
+
total_pages = (total_rows + rows_per_page - 1) // rows_per_page
|
470 |
+
|
471 |
+
# Initialize page number in session state
|
472 |
+
if "page_number" not in st.session_state:
|
473 |
+
st.session_state.page_number = 0
|
474 |
+
|
475 |
+
# Calculate start and end indices for current page
|
476 |
+
start_idx = st.session_state.page_number * rows_per_page
|
477 |
+
end_idx = min(start_idx + rows_per_page, total_rows)
|
478 |
+
|
479 |
+
st.dataframe(
|
480 |
+
filtered_df.iloc[start_idx:end_idx],
|
481 |
+
hide_index=True,
|
482 |
+
use_container_width=True,
|
483 |
+
column_config={
|
484 |
+
"UniProt_ID": st.column_config.LinkColumn(
|
485 |
+
"UniProt ID",
|
486 |
+
help="Click to view protein in UniProt",
|
487 |
+
validate="^https://www\\.uniprot\\.org/uniprotkb/[A-Z0-9]+/entry$",
|
488 |
+
display_text="^https://www\\.uniprot\\.org/uniprotkb/([A-Z0-9]+)/entry$"
|
489 |
+
),
|
490 |
+
"GO_ID": st.column_config.LinkColumn(
|
491 |
+
"GO ID",
|
492 |
+
help="Click to view GO term in QuickGO",
|
493 |
+
validate="^https://www\\.ebi\\.ac\\.uk/QuickGO/term/GO:[0-9]+$",
|
494 |
+
display_text="^https://www\\.ebi\\.ac\\.uk/QuickGO/term/(GO:[0-9]+)$"
|
495 |
+
),
|
496 |
+
"Probability": st.column_config.ProgressColumn(
|
497 |
+
"Probability",
|
498 |
+
format="%.2f",
|
499 |
+
min_value=0,
|
500 |
+
max_value=1,
|
501 |
+
),
|
502 |
+
"Protein": st.column_config.TextColumn(
|
503 |
+
"Protein",
|
504 |
+
help="Protein Name",
|
505 |
+
),
|
506 |
+
"GO_category": st.column_config.TextColumn(
|
507 |
+
"GO Category",
|
508 |
+
help="Gene Ontology Category",
|
509 |
+
),
|
510 |
+
"GO_term": st.column_config.TextColumn(
|
511 |
+
"GO Term",
|
512 |
+
help="Gene Ontology Term Name",
|
513 |
+
),
|
514 |
}
|
515 |
+
)
|
516 |
+
# Pagination controls with better layout
|
517 |
+
col1, col2, col3 = st.columns([1, 3, 1])
|
518 |
+
with col1:
|
519 |
+
if st.button("Previous", disabled=st.session_state.page_number == 0):
|
520 |
+
st.session_state.page_number -= 1
|
521 |
+
st.rerun()
|
522 |
+
|
523 |
+
with col2:
|
524 |
+
st.markdown(f"""
|
525 |
+
<div class="pagination-info" style="text-align: center">
|
526 |
+
Page {st.session_state.page_number + 1} of {total_pages}<br>
|
527 |
+
Showing rows {start_idx + 1} to {end_idx} of {total_rows}
|
528 |
+
</div>
|
529 |
+
""", unsafe_allow_html=True)
|
530 |
|
531 |
+
with col3:
|
532 |
+
if st.button("Next", disabled=st.session_state.page_number >= total_pages - 1):
|
533 |
+
st.session_state.page_number += 1
|
534 |
+
st.rerun()
|
535 |
+
|
536 |
+
downloadable_df = filtered_df.copy()
|
537 |
+
downloadable_df['UniProt_ID'] = downloadable_df['UniProt_ID'].apply(
|
538 |
+
lambda x: x.split('/')[-2] # Gets the ID part from the URL
|
539 |
+
)
|
540 |
+
downloadable_df['GO_ID'] = downloadable_df['GO_ID'].apply(
|
541 |
+
lambda x: x.split('/')[-1] # Gets the ID part from the URL
|
542 |
+
)
|
543 |
+
# Download filtered results
|
544 |
+
st.download_button(
|
545 |
+
label="Download Filtered Results",
|
546 |
+
data=convert_df(downloadable_df),
|
547 |
+
file_name="filtered_predictions.csv",
|
548 |
+
mime="text/csv",
|
549 |
+
key="download_filtered_predictions"
|
550 |
+
)
|
551 |
+
|
552 |
+
with kg_viz_tab:
|
553 |
+
st.markdown("### Knowledge Graph Visualization")
|
554 |
+
|
555 |
+
if not selected_proteins:
|
556 |
+
st.info("Please select proteins from the sidebar to visualize their knowledge graphs.")
|
557 |
+
elif len(selected_proteins) <= 10:
|
558 |
+
st.text("Visualize the knowledge graph for each protein to understand the biological relationships that contributed to the predictions.")
|
559 |
+
|
560 |
+
protein_tabs = st.tabs([f"{protein_id}" for protein_id in selected_proteins])
|
561 |
+
|
562 |
+
# Create visualizations in each tab
|
563 |
+
for idx, protein_id in enumerate(selected_proteins):
|
564 |
+
with protein_tabs[idx]:
|
565 |
+
max_node_count = st.slider(
|
566 |
+
"Maximum neighbors per edge type",
|
567 |
+
min_value=5,
|
568 |
+
max_value=50,
|
569 |
+
value=10,
|
570 |
+
step=5,
|
571 |
+
help="Control the maximum number of neighboring nodes shown for each relationship type",
|
572 |
+
key=f"slider_{protein_id}"
|
573 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
574 |
|
575 |
+
# Check if visualization exists for this protein
|
576 |
+
viz_exists = (protein_id in st.session_state.protein_visualizations and
|
577 |
+
os.path.exists(st.session_state.protein_visualizations[protein_id]['path']))
|
578 |
+
|
579 |
+
if not viz_exists:
|
580 |
+
if st.button(f"Generate Visualization", key=f"viz_{protein_id}"):
|
581 |
+
# Generate visualization with selected max_node_count
|
582 |
+
html_path, visualized_edges = visualize_protein_subgraph(
|
583 |
+
st.session_state.heterodata,
|
584 |
+
protein_id,
|
585 |
+
st.session_state.predictions_df,
|
586 |
+
limit=max_node_count
|
587 |
+
)
|
588 |
+
|
589 |
+
# Store visualization info in session state
|
590 |
+
st.session_state.protein_visualizations[protein_id] = {
|
591 |
+
'path': html_path,
|
592 |
+
'edges': visualized_edges
|
593 |
+
}
|
594 |
+
st.rerun()
|
595 |
+
|
596 |
+
# If visualization exists, display it
|
597 |
+
if viz_exists:
|
598 |
+
viz_info = st.session_state.protein_visualizations[protein_id]
|
599 |
+
|
600 |
+
# Add download button for edges
|
601 |
+
formatted_edges = {}
|
602 |
+
for edge_type, edges in viz_info['edges'].items():
|
603 |
+
edge_type_str = f"{edge_type[0]}_{edge_type[1]}_{edge_type[2]}"
|
604 |
+
formatted_edges[edge_type_str] = [
|
605 |
+
{"source": edge[0][0], "target": edge[0][1], "probability": edge[1]}
|
606 |
+
for edge in edges
|
607 |
+
]
|
608 |
+
|
609 |
+
kg_viz_button_columns = st.columns([1, 1, 1])
|
610 |
+
|
611 |
+
with kg_viz_button_columns[0]:
|
612 |
+
st.download_button(
|
613 |
+
label='Download Visualized Edges',
|
614 |
+
data=json.dumps(formatted_edges, indent=2),
|
615 |
+
file_name=f'{protein_id}_visualized_edges.json',
|
616 |
+
mime='application/json'
|
617 |
+
)
|
618 |
+
|
619 |
+
with kg_viz_button_columns[1]:
|
620 |
+
if st.button("Regenerate Visualization", key=f"regenerate_{protein_id}"):
|
621 |
+
# Clean up old file
|
622 |
+
try:
|
623 |
+
os.unlink(viz_info['path'])
|
624 |
+
except FileNotFoundError:
|
625 |
+
pass
|
626 |
+
# Remove from session state
|
627 |
+
del st.session_state.protein_visualizations[protein_id]
|
628 |
+
st.rerun()
|
629 |
+
|
630 |
+
with open(viz_info['path'], 'r', encoding='utf-8') as f:
|
631 |
+
html_content = f.read()
|
632 |
+
|
633 |
+
st.components.v1.html(html_content, height=600)
|
634 |
|
635 |
|
636 |
+
else:
|
637 |
+
st.warning("Knowledge graph visualization is only available when 10 or fewer proteins are selected.")
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -7,4 +7,5 @@ torch_sparse==0.6.15
|
|
7 |
torch_scatter==2.1.0
|
8 |
torch_geometric==2.2.0
|
9 |
gdown
|
10 |
-
rapidfuzz
|
|
|
|
7 |
torch_scatter==2.1.0
|
8 |
torch_geometric==2.2.0
|
9 |
gdown
|
10 |
+
rapidfuzz
|
11 |
+
pyvis
|
run_prothgt_app.py
CHANGED
@@ -130,9 +130,9 @@ def _create_prediction_df(predictions, heterodata, protein_ids, go_category):
|
|
130 |
|
131 |
# Create DataFrame
|
132 |
prediction_df = pd.DataFrame({
|
133 |
-
'UniProt_ID':
|
134 |
'Protein': all_protein_names,
|
135 |
-
'GO_ID':
|
136 |
'GO_term': all_go_term_names,
|
137 |
'GO_category': all_categories,
|
138 |
'Probability': all_probabilities
|
@@ -204,7 +204,6 @@ def generate_prediction_df(protein_ids, model_paths, model_config_paths, go_cate
|
|
204 |
del predictions
|
205 |
torch.cuda.empty_cache() # Clear CUDA cache if using GPU
|
206 |
|
207 |
-
del heterodata
|
208 |
|
209 |
# Combine all predictions
|
210 |
final_df = pd.concat(all_predictions, ignore_index=True)
|
@@ -213,4 +212,4 @@ def generate_prediction_df(protein_ids, model_paths, model_config_paths, go_cate
|
|
213 |
del all_predictions
|
214 |
torch.cuda.empty_cache()
|
215 |
|
216 |
-
return final_df
|
|
|
130 |
|
131 |
# Create DataFrame
|
132 |
prediction_df = pd.DataFrame({
|
133 |
+
'UniProt_ID': all_proteins,
|
134 |
'Protein': all_protein_names,
|
135 |
+
'GO_ID': all_go_terms,
|
136 |
'GO_term': all_go_term_names,
|
137 |
'GO_category': all_categories,
|
138 |
'Probability': all_probabilities
|
|
|
204 |
del predictions
|
205 |
torch.cuda.empty_cache() # Clear CUDA cache if using GPU
|
206 |
|
|
|
207 |
|
208 |
# Combine all predictions
|
209 |
final_df = pd.concat(all_predictions, ignore_index=True)
|
|
|
212 |
del all_predictions
|
213 |
torch.cuda.empty_cache()
|
214 |
|
215 |
+
return heterodata, final_df
|
visualize_kg.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pyvis.network import Network
|
2 |
+
import os
|
3 |
+
|
4 |
+
NODE_TYPE_COLORS = {
|
5 |
+
'Disease': '#079dbb',
|
6 |
+
'HPO': '#58d0e8',
|
7 |
+
'Drug': '#815ac0',
|
8 |
+
'Compound': '#d2b7e5',
|
9 |
+
'Domain': '#6bbf59',
|
10 |
+
'GO_term_P': '#ff8800',
|
11 |
+
'GO_term_F': '#ffaa00',
|
12 |
+
'GO_term_C': '#ffc300',
|
13 |
+
'Pathway': '#720026',
|
14 |
+
'kegg_Pathway': '#720026',
|
15 |
+
'EC_number': '#ce4257',
|
16 |
+
'Protein': '#3aa6a4'
|
17 |
+
}
|
18 |
+
|
19 |
+
GO_CATEGORY_MAPPING = {
|
20 |
+
'Biological Process': 'GO_term_P',
|
21 |
+
'Molecular Function': 'GO_term_F',
|
22 |
+
'Cellular Component': 'GO_term_C'
|
23 |
+
}
|
24 |
+
|
25 |
+
def _gather_protein_edges(data, protein_id):
|
26 |
+
|
27 |
+
protein_idx = data['Protein']['id_mapping'][protein_id]
|
28 |
+
reverse_id_mapping = {}
|
29 |
+
for node_type in data.node_types:
|
30 |
+
reverse_id_mapping[node_type] = {v:k for k, v in data[node_type]['id_mapping'].items()}
|
31 |
+
|
32 |
+
protein_edges = {}
|
33 |
+
|
34 |
+
print(f'Gathering edges for {protein_id}...')
|
35 |
+
|
36 |
+
for edge_type in data.edge_types:
|
37 |
+
if 'rev' not in edge_type[1]:
|
38 |
+
if edge_type not in protein_edges:
|
39 |
+
protein_edges[edge_type] = []
|
40 |
+
if edge_type[0] == 'Protein':
|
41 |
+
print(f'Gathering edges for {edge_type}...')
|
42 |
+
# append the edges with protein_idx as source node
|
43 |
+
edges = data[edge_type].edge_index[:, data[edge_type].edge_index[0] == protein_idx]
|
44 |
+
protein_edges[edge_type].extend(edges.T.tolist())
|
45 |
+
elif edge_type[2] == 'Protein':
|
46 |
+
print(f'Gathering edges for {edge_type}...')
|
47 |
+
# append the edges with protein_idx as target node
|
48 |
+
edges = data[edge_type].edge_index[:, data[edge_type].edge_index[1] == protein_idx]
|
49 |
+
protein_edges[edge_type].extend(edges.T.tolist())
|
50 |
+
|
51 |
+
for edge_type in protein_edges.keys():
|
52 |
+
if protein_edges[edge_type]:
|
53 |
+
mapped_edges = set()
|
54 |
+
for edge in protein_edges[edge_type]:
|
55 |
+
# Get source and target node types from edge_type
|
56 |
+
source_type, _, target_type = edge_type
|
57 |
+
# Map indices back to original IDs
|
58 |
+
source_id = reverse_id_mapping[source_type][edge[0]]
|
59 |
+
target_id = reverse_id_mapping[target_type][edge[1]]
|
60 |
+
mapped_edges.add((source_id, target_id))
|
61 |
+
protein_edges[edge_type] = mapped_edges
|
62 |
+
|
63 |
+
return protein_edges
|
64 |
+
|
65 |
+
def _filter_edges(protein_id, protein_edges, prediction_df, limit=10):
|
66 |
+
|
67 |
+
filtered_edges = {}
|
68 |
+
|
69 |
+
prediction_categories = prediction_df['GO_category'].unique()
|
70 |
+
prediction_categories = [GO_CATEGORY_MAPPING[category] for category in prediction_categories]
|
71 |
+
go_category_reverse_mapping = {v:k for k, v in GO_CATEGORY_MAPPING.items()}
|
72 |
+
|
73 |
+
for edge_type, edges in protein_edges.items():
|
74 |
+
# Skip if edges is empty
|
75 |
+
if edges is None or len(edges) == 0:
|
76 |
+
continue
|
77 |
+
|
78 |
+
if edge_type[2] in prediction_categories:
|
79 |
+
category_mask = (prediction_df['GO_category'] == go_category_reverse_mapping[edge_type[2]]) & (prediction_df['UniProt_ID'] == protein_id)
|
80 |
+
category_predictions = prediction_df[category_mask]
|
81 |
+
|
82 |
+
if len(category_predictions) > 0:
|
83 |
+
category_predictions = category_predictions.sort_values(by='Probability', ascending=False)
|
84 |
+
|
85 |
+
# Convert set to list for easier filtering
|
86 |
+
edges_list = list(edges)
|
87 |
+
|
88 |
+
# Filter valid edges and store with probabilities
|
89 |
+
valid_edges = []
|
90 |
+
for _, row in category_predictions.iterrows():
|
91 |
+
term = row['GO_ID']
|
92 |
+
prob = row['Probability']
|
93 |
+
matching_edges = [(edge, prob) for edge in edges_list if edge[1] == term]
|
94 |
+
valid_edges.extend(matching_edges)
|
95 |
+
if len(valid_edges) >= limit:
|
96 |
+
break
|
97 |
+
filtered_edges[edge_type] = valid_edges # Remove set conversion to preserve probabilities
|
98 |
+
else:
|
99 |
+
# If no predictions, include all edges up to limit without probabilities
|
100 |
+
filtered_edges[edge_type] = [(edge, None) for edge in list(edges)[:limit]]
|
101 |
+
else:
|
102 |
+
# For non-GO edges, include all edges up to limit without probabilities
|
103 |
+
filtered_edges[edge_type] = [(edge, None) for edge in list(edges)[:limit]]
|
104 |
+
|
105 |
+
return filtered_edges
|
106 |
+
|
107 |
+
|
108 |
+
def visualize_protein_subgraph(data, protein_id, prediction_df, limit=10):
|
109 |
+
protein_edges = _gather_protein_edges(data, protein_id)
|
110 |
+
visualized_edges = _filter_edges(protein_id, protein_edges, prediction_df, limit)
|
111 |
+
print(f'Edges to be visualized: {visualized_edges}')
|
112 |
+
|
113 |
+
net = Network(height="600px", width="100%", directed=True, notebook=False)
|
114 |
+
|
115 |
+
# Create groups configuration from NODE_TYPE_COLORS
|
116 |
+
groups_config = {}
|
117 |
+
for node_type, color in NODE_TYPE_COLORS.items():
|
118 |
+
groups_config[node_type] = {
|
119 |
+
"color": {"background": color, "border": color}
|
120 |
+
}
|
121 |
+
|
122 |
+
# Convert groups_config to a JSON-compatible string
|
123 |
+
import json
|
124 |
+
groups_json = json.dumps(groups_config)
|
125 |
+
|
126 |
+
# Configure physics options with settings for better clustering
|
127 |
+
net.set_options("""{
|
128 |
+
"physics": {
|
129 |
+
"enabled": true,
|
130 |
+
"barnesHut": {
|
131 |
+
"gravitationalConstant": -1000,
|
132 |
+
"springLength": 250,
|
133 |
+
"springConstant": 0.001,
|
134 |
+
"damping": 0.09,
|
135 |
+
"avoidOverlap": 0
|
136 |
+
},
|
137 |
+
"forceAtlas2Based": {
|
138 |
+
"gravitationalConstant": -50,
|
139 |
+
"centralGravity": 0.01,
|
140 |
+
"springLength": 100,
|
141 |
+
"springConstant": 0.08,
|
142 |
+
"damping": 0.4,
|
143 |
+
"avoidOverlap": 0
|
144 |
+
},
|
145 |
+
"solver": "barnesHut",
|
146 |
+
"stabilization": {
|
147 |
+
"enabled": true,
|
148 |
+
"iterations": 1000,
|
149 |
+
"updateInterval": 25
|
150 |
+
}
|
151 |
+
},
|
152 |
+
"layout": {
|
153 |
+
"improvedLayout": true,
|
154 |
+
"hierarchical": {
|
155 |
+
"enabled": false
|
156 |
+
}
|
157 |
+
},
|
158 |
+
"interaction": {
|
159 |
+
"hover": true,
|
160 |
+
"navigationButtons": true,
|
161 |
+
"multiselect": true
|
162 |
+
},
|
163 |
+
"configure": {
|
164 |
+
"enabled": true,
|
165 |
+
"filter": ["physics", "layout", "manipulation"],
|
166 |
+
"showButton": true
|
167 |
+
},
|
168 |
+
"groups": """ + groups_json + "}")
|
169 |
+
|
170 |
+
# Add the main protein node
|
171 |
+
net.add_node(protein_id,
|
172 |
+
label=f"Protein: {protein_id}",
|
173 |
+
color={'background': 'white', 'border': '#c1121f'},
|
174 |
+
borderWidth=4,
|
175 |
+
shape="dot",
|
176 |
+
font={'color': '#000000', 'size': 15},
|
177 |
+
group='Protein',
|
178 |
+
size=30,
|
179 |
+
mass=2.5)
|
180 |
+
|
181 |
+
# Track added nodes to avoid duplication
|
182 |
+
added_nodes = {protein_id}
|
183 |
+
|
184 |
+
# Add edges and target nodes
|
185 |
+
for edge_type, edges in visualized_edges.items():
|
186 |
+
source_type, relation_type, target_type = edge_type
|
187 |
+
|
188 |
+
for edge_info in edges:
|
189 |
+
edge, probability = edge_info
|
190 |
+
source, target = edge[0], edge[1]
|
191 |
+
source_str = str(source)
|
192 |
+
target_str = str(target)
|
193 |
+
|
194 |
+
# Add source node if not present
|
195 |
+
if source_str not in added_nodes:
|
196 |
+
net.add_node(source_str,
|
197 |
+
label=f"{source_str}",
|
198 |
+
shape="dot",
|
199 |
+
font={'color': '#000000', 'size': 12},
|
200 |
+
title=f"{source_type}: {source_str}",
|
201 |
+
group=source_type,
|
202 |
+
size=15,
|
203 |
+
mass=1.5)
|
204 |
+
added_nodes.add(source_str)
|
205 |
+
|
206 |
+
# Add target node if not present
|
207 |
+
if target_str not in added_nodes:
|
208 |
+
net.add_node(target_str,
|
209 |
+
label=f"{target_str}",
|
210 |
+
shape="dot",
|
211 |
+
font={'color': '#000000', 'size': 12},
|
212 |
+
title=f"{target_type}: {target_str}",
|
213 |
+
group=target_type,
|
214 |
+
size=15,
|
215 |
+
mass=1.5)
|
216 |
+
added_nodes.add(target_str)
|
217 |
+
|
218 |
+
# Add edge with relationship type and probability as label
|
219 |
+
edge_label = f"{relation_type}"
|
220 |
+
if probability is not None:
|
221 |
+
edge_label += f"(P={probability:.2f})"
|
222 |
+
net.add_edge(source_str, target_str,
|
223 |
+
label=edge_label,
|
224 |
+
color='#666666',
|
225 |
+
title=edge_label,
|
226 |
+
length=200,
|
227 |
+
smooth={'type': 'curvedCW', 'roundness': 0.1})
|
228 |
+
else:
|
229 |
+
net.add_edge(source_str, target_str,
|
230 |
+
label=edge_label,
|
231 |
+
font={'size': 0},
|
232 |
+
color='#666666',
|
233 |
+
title=edge_label,
|
234 |
+
length=200,
|
235 |
+
smooth={'type': 'curvedCW', 'roundness': 0.1})
|
236 |
+
|
237 |
+
# Save graph to a protein-specific file in a temporary directory
|
238 |
+
os.makedirs('temp_viz', exist_ok=True)
|
239 |
+
file_path = os.path.join('temp_viz', f'{protein_id}_graph.html')
|
240 |
+
net.save_graph(file_path)
|
241 |
+
|
242 |
+
return file_path, visualized_edges
|