import os import streamlit as st with st.spinner("Please wait while we prepare the environment. This may take a few minutes only on the first run..."): # Run setup script if not already executed if not os.path.exists(".setup_done"): os.system("bash setup.sh") with open(".setup_done", "w") as f: f.write("done") import streamlit.components.v1 as components import os import time import pandas as pd from run_prothgt_app import * def convert_df(df): return df.to_csv(index=False).encode('utf-8') # Initialize session state variables if 'predictions_df' not in st.session_state: st.session_state.predictions_df = None if 'submitted' not in st.session_state: st.session_state.submitted = False with st.sidebar: st.markdown("""
ProtHGT
Heterogeneous Graph Transformers for Automated Protein Function Prediction Using Knowledge Graphs and Language Models
publication github-repository
""", unsafe_allow_html=True) available_proteins = get_available_proteins() selected_proteins = [] # Add protein selection methods selection_method = st.radio( "Choose input method:", ["Search proteins", "Upload protein ID file"] ) if selection_method == "Search proteins": # Add custom CSS to make multiselect scrollable st.markdown(""" """, unsafe_allow_html=True) selected_proteins = st.multiselect( "Select or search for proteins (UniProt IDs)", options=available_proteins, placeholder="Start typing to search...", max_selections=100 ) if selected_proteins: st.write(f"Selected {len(selected_proteins)} proteins") else: uploaded_file = st.file_uploader( "Upload a text file with UniProt IDs (one per line, max 100)*", type=['txt'] ) if uploaded_file: protein_list = [line.decode('utf-8').strip() for line in uploaded_file] # Remove empty lines and duplicates protein_list = list(filter(None, protein_list)) protein_list = list(dict.fromkeys(protein_list)) # filter out proteins that are not in available_proteins protein_list = [p for p in protein_list if p in available_proteins] proteins_not_found = [p for p in protein_list if p not in available_proteins] if len(protein_list) > 100: st.error("Please upload a file with maximum 100 protein IDs.") selected_proteins = [] else: selected_proteins = protein_list st.write(f"Loaded {len(selected_proteins)} proteins") if proteins_not_found: st.error(f"Proteins not found in input knowledge graph: {', '.join(proteins_not_found)}") st.warning("Currently, our system can generate predictions only for proteins included in our input knowledge graph. Real-time retrieval of relationship data from external source databases is not yet supported. However, we are actively working on integrating this capability in future updates.") if selected_proteins: # Option 1: Collapsible expander with st.expander("View Selected Proteins"): st.write(f"Total proteins selected: {len(selected_proteins)}") # Create scrollable container with fixed height st.markdown( f"""
{'
'.join(selected_proteins)}
""", unsafe_allow_html=True ) st.markdown("
", unsafe_allow_html=True) # Add download button proteins_text = '\n'.join(selected_proteins) st.download_button( label="Download List", data=proteins_text, file_name="selected_proteins.txt", mime="text/plain", key="download_button" ) # Add GO category selection go_category_options = { 'All Categories': None, 'Molecular Function': 'GO_term_F', 'Biological Process': 'GO_term_P', 'Cellular Component': 'GO_term_C' } selected_go_category = st.selectbox( "Select GO Category for predictions", options=list(go_category_options.keys()), help="Choose which GO category to generate predictions for. Selecting 'All Categories' will generate predictions for all three categories." ) st.warning("⚠️ Due to memory and computational constraints, the maximum number of proteins that can be processed at once is limited to 100 proteins. For larger datasets, please consider running the model locally using our GitHub repository.") if selected_proteins and selected_go_category: # Add a button to trigger predictions if st.button("Generate Predictions"): st.session_state.submitted = True if st.session_state.submitted: with st.spinner("Generating predictions..."): # Generate predictions only if not already in session state if st.session_state.predictions_df is None: # Load model config from JSON file import json import os # Define data directory path data_dir = "data" models_dir = os.path.join(data_dir, "models") # Load model configuration model_config_paths = { 'GO_term_F': os.path.join(models_dir, "prothgt-config-molecular-function.yaml"), 'GO_term_P': os.path.join(models_dir, "prothgt-config-biological-process.yaml"), 'GO_term_C': os.path.join(models_dir, "prothgt-config-cellular-component.yaml") } # Paths for model and data model_paths = { 'GO_term_F': os.path.join(models_dir, "prothgt-model-molecular-function.pt"), 'GO_term_P': os.path.join(models_dir, "prothgt-model-biological-process.pt"), 'GO_term_C': os.path.join(models_dir, "prothgt-model-cellular-component.pt") } # Get the selected GO category go_category = go_category_options[selected_go_category] # If a specific category is selected, use that model path if go_category: model_config_paths = [model_config_paths[go_category]] model_paths = [model_paths[go_category]] go_categories = [go_category] else: model_config_paths = [model_config_paths[cat] for cat in ['GO_term_F', 'GO_term_P', 'GO_term_C']] model_paths = [model_paths[cat] for cat in ['GO_term_F', 'GO_term_P', 'GO_term_C']] go_categories = ['GO_term_F', 'GO_term_P', 'GO_term_C'] # Generate predictions predictions_df = generate_prediction_df( protein_ids=selected_proteins, model_paths=model_paths, model_config_paths=model_config_paths, go_category=go_categories ) st.session_state.predictions_df = predictions_df # Display and filter predictions st.success("Predictions generated successfully!") st.markdown("### Filter and View Predictions") # Create filters st.markdown("### Filter Predictions") col1, col2, col3 = st.columns(3) with col1: # Protein filter selected_protein = st.selectbox( "Filter by Protein", options=['All'] + sorted(st.session_state.predictions_df['Protein'].unique().tolist()) ) with col2: # GO category filter selected_category = st.selectbox( "Filter by GO Category", options=['All'] + sorted(st.session_state.predictions_df['GO_category'].unique().tolist()) ) with col3: # Probability threshold min_probability_threshold = st.slider( "Minimum Probability", min_value=0.0, max_value=1.0, value=0.5, step=0.05 ) max_probability_threshold = st.slider( "Maximum Probability", min_value=0.0, max_value=1.0, value=1.0, step=0.05 ) # Filter the dataframe using session state data filtered_df = st.session_state.predictions_df.copy() if selected_protein != 'All': filtered_df = filtered_df[filtered_df['Protein'] == selected_protein] if selected_category != 'All': filtered_df = filtered_df[filtered_df['GO_category'] == selected_category] filtered_df = filtered_df[(filtered_df['Probability'] >= min_probability_threshold) & (filtered_df['Probability'] <= max_probability_threshold)] # Sort by probability filtered_df = filtered_df.sort_values('Probability', ascending=False) # Display the filtered dataframe st.dataframe( filtered_df, hide_index=True, column_config={ "Probability": st.column_config.ProgressColumn( "Probability", format="%.2f", min_value=0, max_value=1, ), "Protein": st.column_config.TextColumn( "Protein", help="UniProt ID", ), "GO_category": st.column_config.TextColumn( "GO Category", help="Gene Ontology Category", ), "GO_term": st.column_config.TextColumn( "GO Term", help="Gene Ontology Term ID", ), } ) # Download filtered results st.download_button( label="Download Filtered Results", data=convert_df(filtered_df), file_name="filtered_predictions.csv", mime="text/csv", key="download_filtered_predictions" ) # Add a reset button in the sidebar with st.sidebar: if st.session_state.submitted: if st.button("Reset"): st.session_state.predictions_df = None st.session_state.submitted = False st.experimental_rerun()