|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer |
|
from peft import PeftModel |
|
import torch |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
model_path = "Hack337/WavGPT-1.0" |
|
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B-Instruct") |
|
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-1.5B-Instruct", |
|
torch_dtype="auto", device_map="auto") |
|
|
|
model = PeftModel.from_pretrained(model, model_path) |
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(device) |
|
|
|
generated_ids = model.generate( |
|
model_inputs.input_ids, |
|
max_new_tokens=max_tokens, |
|
pad_token_id=tokenizer.eos_token_id, |
|
temperature=temperature, |
|
top_p=top_p |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
return response |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="Вы очень полезный помощник.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |