import gradio as gr from PIL import Image from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, Wav2Vec2Processor, Wav2Vec2ForCTC, ViTFeatureExtractor, ViTForImageClassification import soundfile as sf import torch import numpy as np import time # Initialize the transformers and the models class_names = { 0: "al qarawiyyin", 1: "bab mansour el aleuj", 2: "chaouara tannery", 3: "hassan tower", 4: "jamae el fna", 5: "koutoubia mosque", 6: "madrasa ben youssef", 7: "majorel gardens", 8: "menara" } model_name_or_path = "microsoft/DialoGPT-large" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side="left", use_fast=False) tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float32, trust_remote_code=True) wav2vec2_processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h") wav2vec2_model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h") vit_model = ViTForImageClassification.from_pretrained('ohidaoui/monuments-morocco-v1') vit_feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224') # Function to handle text input def handle_text(text): chat_output = chat({"question": text}) return chat_output["answer"] # Function to handle image input def get_class_name(class_idx): return class_names[class_idx] def handle_image(img): img = np.array(img) inputs = vit_feature_extractor(images=img, return_tensors="pt") outputs = vit_model(**inputs) predicted_class_idx = torch.argmax(outputs.logits, dim=1).item() predicted_class_name = get_class_name(predicted_class_idx) chat_output = chat({"question": "what is " + predicted_class_name}) return chat_output["answer"] # Function to handle audio input def handle_audio(audio): audio = audio[1] input_values = wav2vec2_processor(audio, sampling_rate=16_000, return_tensors="pt").input_values input_values = input_values.to(torch.float32) logits = wav2vec2_model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) transcriptions = wav2vec2_processor.decode(predicted_ids[0]) chat_output = chat({"question": transcriptions}) return chat_output["answer"] # Main function to handle the inputs def chatbot(history, text=None, img=None, audio=None): text_output = handle_text(text) if text is not None else '' img_output = handle_image(img) if img is not None else '' audio_output = handle_audio(audio) if audio is not None else '' outputs = [o for o in [text_output, img_output, audio_output] if o] output = "\n".join(outputs) history[-1][1] = output for character in output: history[-1][1] += character time.sleep(0.05) yield history with gr.Blocks() as demo: chat_interface = gr.Chatbot([], elem_id="chatbot", height=750) with gr.Row(): with gr.Column(scale=0.85): text_input = gr.Textbox( show_label=False, placeholder="Input Text here...", container=False ) with gr.Column(scale=0.15, min_width=0): img_input = gr.Image() audio_input = gr.Audio(source="microphone", label="Audio Input") text_msg = text_input.submit(chatbot, [chat_interface, text_input], [chat_interface, text_input], queue=False) img_msg = img_input.upload(chatbot, [chat_interface, img_input], [chat_interface, img_input], queue=False) audio_msg = audio_input.upload(chatbot, [chat_interface, audio_input], [chat_interface, audio_input], queue=False) demo.queue() demo.launch(share=True)