import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList import time import numpy as np from torch.nn import functional as F import os # auth_key = os.environ["HF_ACCESS_TOKEN"] print(f"Starting to load the model to memory") m = AutoModelForCausalLM.from_pretrained( "stabilityai/stablelm-tuned-alpha-7b", torch_dtype=torch.float16).cuda() tok = AutoTokenizer.from_pretrained("stabilityai/stablelm-tuned-alpha-7b") generator = pipeline('text-generation', model=m, tokenizer=tok, device=0) print(f"Sucessfully loaded the model to the memory") start_message = """<|SYSTEM|># StableAssistant - StableAssistant is A helpful and harmless Open Source AI Language Model developed by Stability and CarperAI. - StableAssistant is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user. - StableAssistant is more than just an information source, StableAssistant is also able to write poetry, short stories, and make jokes. - StableAssistant will refuse to participate in anything that could harm a human.""" class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: stop_ids = [50278, 50279, 50277, 1, 0] for stop_id in stop_ids: if input_ids[0][-1] == stop_id: return True return False def contrastive_generate(text, bad_text): with torch.no_grad(): tokens = tok(text, return_tensors="pt")[ 'input_ids'].cuda()[:, :4096-1024] bad_tokens = tok(bad_text, return_tensors="pt")[ 'input_ids'].cuda()[:, :4096-1024] history = None bad_history = None curr_output = list() for i in range(1024): out = m(tokens, past_key_values=history, use_cache=True) logits = out.logits history = out.past_key_values bad_out = m(bad_tokens, past_key_values=bad_history, use_cache=True) bad_logits = bad_out.logits bad_history = bad_out.past_key_values probs = F.softmax(logits.float(), dim=-1)[0][-1].cpu() bad_probs = F.softmax(bad_logits.float(), dim=-1)[0][-1].cpu() logits = torch.log(probs) bad_logits = torch.log(bad_probs) logits[probs > 0.1] = logits[probs > 0.1] - bad_logits[probs > 0.1] probs = F.softmax(logits) out = int(torch.multinomial(probs, 1)) if out in [50278, 50279, 50277, 1, 0]: break else: curr_output.append(out) out = np.array([out]) tokens = torch.from_numpy(np.array([out])).to( tokens.device) bad_tokens = torch.from_numpy(np.array([out])).to( tokens.device) return tok.decode(curr_output) def generate(text, bad_text=None): stop = StopOnTokens() result = generator(text, max_new_tokens=1024, num_return_sequences=1, num_beams=1, do_sample=True, temperature=1.0, top_p=0.95, top_k=1000, stopping_criteria=StoppingCriteriaList([stop])) return result[0]["generated_text"].replace(text, "") def user(user_message, history): history = history + [[user_message, ""]] return "", history, history def bot(history, curr_system_message): messages = curr_system_message + \ "".join(["".join(["<|USER|>"+item[0], "<|ASSISTANT|>"+item[1]]) for item in history]) output = generate(messages) history[-1][1] = output time.sleep(1) return history, history with gr.Blocks() as demo: history = gr.State([]) gr.Markdown("## StableLM-Tuned-Alpha-7b Chat") gr.HTML('''
Duplicate SpaceDuplicate the Space to skip the queue and run in a private space
''') chatbot = gr.Chatbot().style(height=500) with gr.Row(): with gr.Column(scale=0.70): msg = gr.Textbox(label="", placeholder="Chat Message Box") with gr.Column(scale=0.30, min_width=0): with gr.Row(): submit = gr.Button("Submit") clear = gr.Button("Clear") system_msg = gr.Textbox( start_message, label="System Message", interactive=False, visible=False) msg.submit(fn=user, inputs=[msg, history], outputs=[msg, chatbot, history], queue=False).then( fn=bot, inputs=[chatbot, system_msg], outputs=[chatbot, history], queue=True) submit.click(fn=user, inputs=[msg, history], outputs=[msg, chatbot, history], queue=False).then( fn=bot, inputs=[chatbot, system_msg], outputs=[chatbot, history], queue=True) clear.click(lambda: [None, []], None, [chatbot, history], queue=False) demo.queue(concurrency_count=5) demo.launch()