Spaces:
Runtime error
Runtime error
File size: 9,767 Bytes
50f0fbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
from dataclasses import dataclass
from transformers import (
MegatronBertConfig,
MegatronBertForPreTraining,
AutoTokenizer,
)
from pytorch_lightning import (
LightningModule,
Trainer,
)
from pytorch_lightning.callbacks import (
LearningRateMonitor,
)
import argparse
import torch
import os
import numpy as np
import time
from fengshen.data.universal_datamodule import UniversalDataModule
from fengshen.data.data_utils.sop_utils import get_a_and_b_segments
from fengshen.data.data_utils.truncate_utils import truncate_segments
from fengshen.data.data_utils.token_type_utils import create_tokens_and_tokentypes
from fengshen.data.data_utils.mask_utils import create_masked_lm_predictions
from fengshen.models.model_utils import (
add_module_args,
configure_optimizers,
get_total_steps,
)
from fengshen.utils.universal_checkpoint import UniversalCheckpoint
from torch.utils.data._utils.collate import default_collate
SHOW_DATA = False
@dataclass
class ErLangShenCollator:
'''
由input处理成samples,也就是最终模型的输入
其中主要处理逻辑在__call__里
包含Mask和Sop任务
'''
tokenizer: None # 分词
max_seq_length: 512
masked_lm_prob: 0.15
content_key: str = 'text'
# 一些预处理操作
def setup(self):
from fengshen.data.data_utils.sentence_split import ChineseSentenceSplitter
self.sentence_split = ChineseSentenceSplitter()
self.np_rng = np.random.RandomState(seed=((int(time.time()) % 2**32)))
inv_vocab = {v: k for k, v in self.tokenizer.vocab.items()}
self.vocab_id_list = list(inv_vocab.keys())
self.vocab_id_to_token_dict = inv_vocab
def __call__(self, samples):
'''
samples: 一个sample长这样{"text": "hello world"}
'''
model_inputs = []
for s in samples:
sentences = self.sentence_split.tokenize(s[self.content_key])
# Divide sample into two segments (A and B).
tokenized_sentences = [self.tokenizer.convert_tokens_to_ids(
self.tokenizer.tokenize(sent)) for sent in sentences]
if len(tokenized_sentences) == 0:
print('find empty sentence')
continue
if len(tokenized_sentences) > 1:
tokens_a, tokens_b, is_next_random = get_a_and_b_segments(tokenized_sentences,
self.np_rng)
else:
tokens_a = tokenized_sentences[0]
tokens_b = []
is_next_random = False
# max_seq_length - 3因为还需要拼上[CLS] [SEP] [SEP]
if len(tokens_a) == 0:
continue
_ = truncate_segments(tokens_a, tokens_b, len(tokens_a),
len(tokens_b), self.max_seq_length-3, self.np_rng)
# Build tokens and toketypes.
tokens, tokentypes = create_tokens_and_tokentypes(tokens_a, tokens_b,
self.tokenizer.cls_token_id, self.tokenizer.sep_token_id)
# Masking.
max_predictions_per_seq = self.masked_lm_prob * len(tokens)
(tokens, masked_positions, masked_labels, _, _) = create_masked_lm_predictions(
tokens, self.vocab_id_list, self.vocab_id_to_token_dict, self.masked_lm_prob,
self.tokenizer.cls_token_id, self.tokenizer.sep_token_id, self.tokenizer.mask_token_id,
max_predictions_per_seq, self.np_rng,
masking_style='bert')
# Some checks.
num_tokens = len(tokens)
padding_length = self.max_seq_length - num_tokens
assert padding_length >= 0
assert len(tokentypes) == num_tokens
assert len(masked_positions) == len(masked_labels)
# Tokens and token types.
filler = [self.tokenizer.pad_token_id] * padding_length
tokens_np = np.array(tokens + filler, dtype=np.int64)
tokentypes_np = np.array(tokentypes + filler, dtype=np.int64)
# Padding mask.
padding_mask_np = np.array([1] * num_tokens + [0] * padding_length,
dtype=np.int64)
# Lables and loss mask.
labels = [-100] * self.max_seq_length
for i in range(len(masked_positions)):
assert masked_positions[i] < num_tokens
labels[masked_positions[i]] = masked_labels[i]
labels_np = np.array(labels, dtype=np.int64)
model_inputs.append(
{
'input_ids': tokens_np,
'attention_mask': padding_mask_np,
'token_type_ids': tokentypes_np,
'labels': labels_np,
'next_sentence_label': int(is_next_random)
}
)
return default_collate(model_inputs)
class ErLangShenBert(LightningModule):
@staticmethod
def add_module_specific_args(parent_parser):
parser = parent_parser.add_argument_group('Erlangshen Bert')
parser.add_argument('--masked_lm_prob', type=float, default=0.15)
parser.add_argument('--max_seq_length', type=int, default=512)
parser.add_argument('--sample_content_key', type=str, default='text')
return parent_parser
def __init__(self, args, tokenizer, **kwargs) -> None:
super().__init__()
self.save_hyperparameters(args)
config = MegatronBertConfig.from_pretrained(args.model_path)
self.config = config
self.tokenizer = tokenizer
self.model = MegatronBertForPreTraining(config)
def setup(self, stage) -> None:
if stage == 'fit':
self.total_steps = get_total_steps(self.trainer, self.hparams)
print('Total steps: {}' .format(self.total_steps))
def configure_optimizers(self):
return configure_optimizers(self)
def forward(self, **batch):
return self.model(**batch)
def detokenize(self, token_ids):
toks = self.tokenizer.convert_ids_to_tokens(token_ids)
return self.tokenizer.convert_tokens_to_string(toks)
def comput_metrix(self, logits, labels):
y_pred = torch.argmax(logits, dim=-1)
y_pred = y_pred.view(size=(-1,))
y_true = labels.view(size=(-1,)).float()
corr = torch.eq(y_pred, y_true)
acc = torch.sum(corr.float())/labels.shape[0]
return acc
def training_step(self, batch, batch_idx):
if self.trainer.global_rank == 0:
global SHOW_DATA
if not SHOW_DATA:
print(self.config)
print(self.model)
SHOW_DATA = True
print('source: {}'.format(batch['input_ids'][0]))
print('target: {}'.format(batch['labels'][0]))
print('source: {}'.format(self.detokenize(batch['input_ids'][0])))
label_idx = batch['labels'][0] != -100
print('target: {}'.format(self.detokenize(
batch['labels'][0][label_idx])))
output = self(**batch)
self.log('train_loss', output.loss, sync_dist=True)
label_idx = batch['labels'] != -100
acc = self.comput_metrix(
output.prediction_logits[label_idx].view(-1, output.prediction_logits.size(-1)), batch['labels'][label_idx])
self.log('train_acc', acc, sync_dist=True)
return output.loss
def validation_step(self, batch, batch_idx):
output = self(**batch)
self.log('val_loss', output.loss, sync_dist=True)
return output.loss
def on_load_checkpoint(self, checkpoint) -> None:
# 兼容低版本lightning,低版本lightning从ckpt起来时steps数会被重置为0
global_step_offset = checkpoint["global_step"]
if 'global_samples' in checkpoint:
self.consumed_samples = checkpoint['global_samples']
self.trainer.fit_loop.epoch_loop._batches_that_stepped = global_step_offset
if __name__ == '__main__':
args_parser = argparse.ArgumentParser()
args_parser = add_module_args(args_parser)
args_parser = UniversalDataModule.add_data_specific_args(args_parser)
args_parser = Trainer.add_argparse_args(args_parser)
args_parser = ErLangShenBert.add_module_specific_args(args_parser)
args_parser = UniversalCheckpoint.add_argparse_args(args_parser)
args = args_parser.parse_args()
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
collate_fn = ErLangShenCollator(
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
masked_lm_prob=args.masked_lm_prob,
content_key=args.sample_content_key,
)
collate_fn.setup()
data_module = UniversalDataModule(tokenizer=tokenizer, args=args, collate_fn=collate_fn)
print('data load complete')
model = ErLangShenBert(args, tokenizer=tokenizer)
print('model load complete')
lr_monitor = LearningRateMonitor(logging_interval='step')
checkpoint_callback = UniversalCheckpoint(args)
# 做兼容,如果目录不存在的话把这个参数去掉,不然会报错
if args.load_ckpt_path is not None and \
not os.path.exists(args.load_ckpt_path):
print('--------warning no checkpoint found--------, remove args')
args.load_ckpt_path = None
trainer = Trainer.from_argparse_args(args,
callbacks=[
lr_monitor,
checkpoint_callback])
trainer.fit(model, data_module, ckpt_path=args.load_ckpt_path)
|