chinesesummary / fengshen /examples /mt5_summary /pretrain_mt5_summary.sh
HaloMaster's picture
add fengshen
50f0fbb
raw
history blame
3.04 kB
#!/bin/bash
#SBATCH --job-name=mt5_large_summary
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=4
#SBATCH --gres=gpu:4 # number of gpus
#SBATCH -o /cognitive_comp/ganruyi/fengshen/mt5_large_summary/%x-%j.log
#SBATCH -e /cognitive_comp/ganruyi/fengshen/mt5_large_summary/%x-%j.err
set -x -e
echo "START TIME: $(date)"
MICRO_BATCH_SIZE=16
ROOT_DIR=/cognitive_comp/ganruyi/fengshen/mt5_large_summary
ZERO_STAGE=2
config_json="$ROOT_DIR/ds_config.$SLURM_JOBID.json"
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
cat <<EOT > $config_json
{
"train_micro_batch_size_per_gpu": 16,
"steps_per_print": 100,
"gradient_clipping": 1.0,
"zero_optimization": {
"stage": $ZERO_STAGE,
"contiguous_gradients": false,
"overlap_comm": true,
"reduce_scatter": true,
"reduce_bucket_size": 50000000,
"allgather_bucket_size": 500000000
},
"optimizer": {
"type": "Adam",
"params": {
"lr": 1e-5,
"betas": [
0.9,
0.95
],
"eps": 1e-8,
"weight_decay": 1e-2
}
},
"scheduler": {
"type": "WarmupLR",
"params":{
"warmup_min_lr": 5e-6,
"warmup_max_lr": 1e-5
}
},
"zero_allow_untested_optimizer": false,
"fp16": {
"enabled": true,
"loss_scale": 0,
"loss_scale_window": 1000,
"hysteresis": 2,
"min_loss_scale": 1
},
"activation_checkpointing": {
"partition_activations": false,
"contiguous_memory_optimization": false
},
"wall_clock_breakdown": false
}
EOT
# export PL_DEEPSPEED_CONFIG_PATH=$config_json
TRAINER_ARGS="
--max_epochs 2 \
--gpus 4 \
--num_nodes 1 \
--strategy ddp \
--default_root_dir $ROOT_DIR \
--dirpath $ROOT_DIR/ckpt \
--save_top_k 3 \
--monitor train_loss \
--mode min \
--save_last \
"
DATA_DIR=/cognitive_comp/ganruyi/data_datasets_LCSTS_LCSTS/
prompt="summary:"
DATA_ARGS="
--data_dir $DATA_DIR
--train_batchsize $MICRO_BATCH_SIZE \
--valid_batchsize $MICRO_BATCH_SIZE \
--train_data train.jsonl\
--valid_data valid.jsonl\
--test_data valid.jsonl\
--prompt $prompt \
"
MODEL_ARGS="
--pretrained_model_path /cognitive_comp/ganruyi/hf_models/google/mt5-large \
--output_save_path $ROOT_DIR/mt5_large_predict_lcsts.json \
--learning_rate 1e-4 \
--weight_decay 0.1 \
--warmup 0.01 \
"
SCRIPTS_PATH=/cognitive_comp/ganruyi/fengshen/examples/mt5_summary.py
export CMD=" \
$SCRIPTS_PATH \
$TRAINER_ARGS \
$MODEL_ARGS \
$DATA_ARGS \
"
echo $CMD
SINGULARITY_PATH=/cognitive_comp/ganruyi/pytorch21_06_py3_docker_image_v2.sif
#singularity exec --nv -B /cognitive_comp/ganruyi/Megatron/:/cognitive_comp/ganruyi/Megatron/,/cognitive_comp/gaoxinyu/:/cognitive_comp/gaoxinyu/ $SINGULARITY_PATH python $CMD
# to debug - add echo (it exits and prints what it would have launched)
#run_cmd="$PY_LAUNCHER $CMD"
clear; srun singularity exec --nv -B /cognitive_comp/ganruyi/:/cognitive_comp/ganruyi/ $SINGULARITY_PATH bash -c 'python $CMD'