from fengshen.data.task_dataloader.task_datasets import LCSTSDataModel from transformers import T5Tokenizer, MT5ForConditionalGeneration from transformers.optimization import get_linear_schedule_with_warmup from pytorch_lightning import Trainer, loggers from pytorch_lightning.callbacks import ModelCheckpoint from transformers import AutoTokenizer import pytorch_lightning as pl import json import argparse import torch import os import sys sys.path.append('./') # os.environ["CUDA_VISIBLE_DEVICES"] = '4,5,6,7' def test(): tokenizer = T5Tokenizer.from_pretrained("google/mt5-small") article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien." summary = "Weiter Verhandlung in Syrien." article = "日前,方舟子发文直指林志颖旗下爱碧丽推销假保健品,引起哗然。调查发现,爱碧丽没有自己的生产加工厂。 \ 其胶原蛋白饮品无核心研发,全部代工生产。号称有“逆生长”功效的爱碧丽“梦幻奇迹限量组”售价>高达1080元,实际成本仅为每瓶4元!" summary = "林志颖公司疑涉虚假营销无厂房无研发" inputs = tokenizer(article, rturn_tensors="pt") tt = tokenizer.encode_plus(summary, max_length=64, padding='max_length', truncation='longest_first') print('tt:', tt) print('inputs:', inputs) with tokenizer.as_target_tokenizer(): labels = tokenizer(summary, return_tensors="pt") print('labels:', labels) print('origin labels:', tokenizer.decode(labels['input_ids'][0])) model = MT5ForConditionalGeneration.from_pretrained("google/mt5-small") # outputs = model(input_ids=inputs["input_ids"], labels=labels["input_ids"]) # print(outputs.keys()) # evaluation model.eval() generated_ids = model.generate( input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'], max_length=150, num_beams=2, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True ) preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids] print(preds) class MT5FinetuneSummaryModelCheckpoint: @staticmethod def add_argparse_args(parent_args): parser = parent_args.add_argument_group('BaseModel') parser.add_argument('--monitor', default='train_loss', type=str) parser.add_argument('--mode', default='min', type=str) parser.add_argument('--dirpath', default='./ckpt/', type=str) parser.add_argument( '--filename', default='model-{epoch:02d}-{train_loss:.4f}', type=str) parser.add_argument('--save_last', action='store_true', default=True) parser.add_argument('--save_top_k', default=3, type=float) parser.add_argument('--every_n_train_steps', default=100, type=float) parser.add_argument('--save_weights_only', default=True, type=bool) return parent_args def __init__(self, args): self.callbacks = ModelCheckpoint(monitor=args.monitor, save_top_k=args.save_top_k, mode=args.mode, every_n_train_steps=args.every_n_train_steps, save_weights_only=args.save_weights_only, dirpath=args.dirpath, filename=args.filename, save_last=args.save_last) class MT5FinetuneSummary(pl.LightningModule): @staticmethod def add_model_specific_args(parent_args): parser = parent_args.add_argument_group('BaseModel') parser.add_argument('--learning_rate', default=1e-4, type=float) parser.add_argument('--weight_decay', default=0.1, type=float) parser.add_argument('--warmup', default=0.01, type=float) return parent_args def __init__(self, args, num_data): super().__init__() self.args = args self.num_data = num_data print('num_data:', num_data) self.model = MT5ForConditionalGeneration.from_pretrained(args.pretrained_model_path) def setup(self, stage) -> None: if stage == 'fit': num_gpus = self.trainer.gpus if self.trainer.gpus is not None else 0 self.total_step = int(self.trainer.max_epochs * self.num_data / (max(1, num_gpus) * self.trainer.accumulate_grad_batches)) print('Total training step:', self.total_step) def training_step(self, batch, batch_idx): output = self.model(input_ids=batch['input_ids'], attention_mask=batch['attention_mask'], labels=batch['labels']) # output = self.model(input_ids=batch['input_ids'], labels=batch['labels']) # acc = self.comput_metrix(output.logits, batch['labels']) self.log('train_loss', output.loss) return output.loss def comput_metrix(self, logits, labels): y_pred = torch.argmax(logits, dim=-1) y_pred = y_pred.view(size=(-1,)) y_true = labels.view(size=(-1,)).float() corr = torch.eq(y_pred, y_true) acc = torch.sum(corr.float())/labels.size()[0] return acc def validation_step(self, batch, batch_idx): output = self.model(input_ids=batch['input_ids'], attention_mask=batch['attention_mask'], labels=batch['labels']) # output = self.model(input_ids=batch['input_ids'], labels=batch['labels']) # acc = self.comput_metrix(output.logits, batch['labels']) self.log('val_loss', output.loss) # self.log('val_acc', acc) def predict_step(self, batch, batch_idx): text = batch['text'] summary = batch['summary'] generated_ids = self.model.generate( input_ids=batch['input_ids'], attention_mask=batch['attention_mask'], max_length=self.args.max_dec_length ) return {"pred": generated_ids, "text": text, "summary": summary} def configure_optimizers(self): no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] paras = list( filter(lambda p: p[1].requires_grad, self.named_parameters())) paras = [{ 'params': [p for n, p in paras if not any(nd in n for nd in no_decay)], 'weight_decay': self.args.weight_decay }, { 'params': [p for n, p in paras if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] optimizer = torch.optim.AdamW(paras, lr=self.args.learning_rate) scheduler = get_linear_schedule_with_warmup( optimizer, int(self.total_step * self.args.warmup), self.total_step) return [{ 'optimizer': optimizer, 'lr_scheduler': { 'scheduler': scheduler, 'interval': 'step', 'frequency': 1 } }] def save_test(data, args, data_model): tokenizer = AutoTokenizer.from_pretrained(args.pretrained_model_path) with open(os.path.join(args.output_save_path), 'w', encoding='utf-8') as f: for _, batch in enumerate(data): texts = batch['text'] summarys = batch['summary'] preds = batch['pred'] for idx, pred_ids in enumerate(preds): text = texts[idx] summary = summarys[idx] tmp_result = dict() preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in pred_ids] tmp_result['summary'] = ''.join(preds) tmp_result['label'] = summary tmp_result['origin_text'] = text json_data = json.dumps(tmp_result, ensure_ascii=False) f.write(json_data+'\n') print('save the result to '+args.output_save_path) def main(): total_parser = argparse.ArgumentParser("Summary Task") total_parser.add_argument('--do_eval_only', action='store_true', default=False) total_parser.add_argument('--pretrained_model_path', default='google/mt5-small', type=str) total_parser.add_argument('--output_save_path', default='./predict.json', type=str) # * Args for data preprocessing total_parser = LCSTSDataModel.add_data_specific_args(total_parser) # * Args for training total_parser = Trainer.add_argparse_args(total_parser) total_parser = MT5FinetuneSummaryModelCheckpoint.add_argparse_args(total_parser) total_parser = MT5FinetuneSummary.add_model_specific_args(total_parser) # * Args for base model args = total_parser.parse_args() data_model = LCSTSDataModel(args) if not args.do_eval_only: model = MT5FinetuneSummary(args, len(data_model.train_dataloader())) checkpoint_callback = MT5FinetuneSummaryModelCheckpoint(args).callbacks logger = loggers.TensorBoardLogger(save_dir=os.path.join( args.default_root_dir, 'log/'), name='mt5_summary') trainer = Trainer.from_argparse_args(args, logger=logger, callbacks=[checkpoint_callback] ) trainer.fit(model, data_model) else: trainer = Trainer.from_argparse_args(args) model = MT5FinetuneSummary.load_from_checkpoint( args.resume_from_checkpoint, args=args, num_data=len(data_model.predict_dataloader())) result = trainer.predict(model, data_model) if torch.distributed.get_rank() == 0: save_test(result, args, data_model) if __name__ == '__main__': main() # test() ''' python examples/mt5_summary.py --gpus=1 --test_data=test_public.jsonl --default_root_dir=/cognitive_comp/ganruyi/fengshen/mt5_summary/eval --do_eval_only --resume_from_checkpoint=/cognitive_comp/ganruyi/fengshen/mt5_summary/ckpt/model-epoch=01-train_loss=1.9166.ckpt --strategy=ddp '''