Spaces:
Sleeping
Sleeping
File size: 1,636 Bytes
eb6c08b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import streamlit as st
from PIL import Image
import torch
from transformers import ViTForImageClassification, ViTImageProcessor
# Load the model and feature extractor from Hugging Face
repository_id = "Hammad712/brainmri-vit-model"
model = ViTForImageClassification.from_pretrained(repository_id)
feature_extractor = ViTImageProcessor.from_pretrained(repository_id)
# Function to perform inference
def predict(image):
# Convert image to RGB and preprocess it
image = image.convert("RGB")
inputs = feature_extractor(images=image, return_tensors="pt")
# Move the inputs to the appropriate device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
inputs = {k: v.to(device) for k, v in inputs.items()}
# Perform inference
with torch.no_grad():
outputs = model(**inputs)
# Get the predicted label
logits = outputs.logits
predicted_label = logits.argmax(-1).item()
# Map the label to "No" or "Yes"
label_map = {0: "No", 1: "Yes"}
return label_map[predicted_label]
# Streamlit app
st.title("Brain MRI Tumor Detection")
st.write("Upload an MRI image to predict whether it contains a tumor.")
# File uploader
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Display the uploaded image
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
# Perform inference and display the result
st.write("Classifying...")
label = predict(image)
st.write(f"Predicted label: {label}")
|