Spaces:
Sleeping
Sleeping
Upload streamlit_app.py
Browse files- streamlit_app.py +117 -0
streamlit_app.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from transformers import ViTForImageClassification, ViTImageProcessor
|
5 |
+
import logging
|
6 |
+
import base64
|
7 |
+
from io import BytesIO
|
8 |
+
|
9 |
+
# Setup logging
|
10 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
11 |
+
|
12 |
+
# Load the model and feature extractor from Hugging Face
|
13 |
+
repository_id = "EnDevSols/brainmri-vit-model"
|
14 |
+
model = ViTForImageClassification.from_pretrained(repository_id)
|
15 |
+
feature_extractor = ViTImageProcessor.from_pretrained(repository_id)
|
16 |
+
|
17 |
+
# Function to perform inference
|
18 |
+
def predict(image):
|
19 |
+
# Load and preprocess the image
|
20 |
+
image = image.convert("RGB")
|
21 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
22 |
+
|
23 |
+
# Move the inputs to the appropriate device
|
24 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
+
model.to(device)
|
26 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
27 |
+
|
28 |
+
# Perform inference
|
29 |
+
with torch.no_grad():
|
30 |
+
outputs = model(**inputs)
|
31 |
+
|
32 |
+
# Get the predicted label
|
33 |
+
logits = outputs.logits
|
34 |
+
predicted_label = logits.argmax(-1).item()
|
35 |
+
|
36 |
+
# Map the label to "No" or "Yes"
|
37 |
+
label_map = {0: "No", 1: "Yes"}
|
38 |
+
diagnosis = label_map[predicted_label]
|
39 |
+
|
40 |
+
# Return a complete statement
|
41 |
+
if diagnosis == "Yes":
|
42 |
+
return "The diagnosis indicates that you have a brain tumor."
|
43 |
+
else:
|
44 |
+
return "The diagnosis indicates that you do not have a brain tumor."
|
45 |
+
|
46 |
+
# Custom CSS
|
47 |
+
def set_css(style):
|
48 |
+
st.markdown(f"<style>{style}</style>", unsafe_allow_html=True)
|
49 |
+
|
50 |
+
# Combined dark mode styles
|
51 |
+
combined_css = """
|
52 |
+
.main, .sidebar .sidebar-content { background-color: #1c1c1c; color: #f0f2f6; }
|
53 |
+
.block-container { padding: 1rem 2rem; background-color: #333; border-radius: 10px; box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.5); }
|
54 |
+
.stButton>button, .stDownloadButton>button { background: linear-gradient(135deg, #ff7e5f, #feb47b); color: white; border: none; padding: 10px 24px; text-align: center; text-decoration: none; display: inline-block; font-size: 16px; margin: 4px 2px; cursor: pointer; border-radius: 5px; }
|
55 |
+
.stSpinner { color: #4CAF50; }
|
56 |
+
.title {
|
57 |
+
font-size: 3rem;
|
58 |
+
font-weight: bold;
|
59 |
+
display: flex;
|
60 |
+
align-items: center;
|
61 |
+
justify-content: center;
|
62 |
+
}
|
63 |
+
.colorful-text {
|
64 |
+
background: -webkit-linear-gradient(135deg, #ff7e5f, #feb47b);
|
65 |
+
-webkit-background-clip: text;
|
66 |
+
-webkit-text-fill-color: transparent;
|
67 |
+
}
|
68 |
+
.black-white-text {
|
69 |
+
color: black;
|
70 |
+
}
|
71 |
+
.small-input .stTextInput>div>input {
|
72 |
+
height: 2rem;
|
73 |
+
font-size: 0.9rem;
|
74 |
+
}
|
75 |
+
.small-file-uploader .stFileUploader>div>div {
|
76 |
+
height: 2rem;
|
77 |
+
font-size: 0.9rem;
|
78 |
+
}
|
79 |
+
.custom-text {
|
80 |
+
font-size: 1.2rem;
|
81 |
+
color: #feb47b;
|
82 |
+
text-align: center;
|
83 |
+
margin-top: -20px;
|
84 |
+
margin-bottom: 20px;
|
85 |
+
}
|
86 |
+
"""
|
87 |
+
|
88 |
+
# Streamlit application
|
89 |
+
st.set_page_config(layout="wide")
|
90 |
+
|
91 |
+
st.markdown(f"<style>{combined_css}</style>", unsafe_allow_html=True)
|
92 |
+
|
93 |
+
st.markdown('<div class="title"><span class="colorful-text">Brain MRI</span> <span class="black-white-text">Tumor Detection</span></div>', unsafe_allow_html=True)
|
94 |
+
st.markdown('<div class="custom-text">Upload an MRI image to detect brain tumor</div>', unsafe_allow_html=True)
|
95 |
+
|
96 |
+
# Uploading image
|
97 |
+
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
|
98 |
+
|
99 |
+
if uploaded_file is not None:
|
100 |
+
image = Image.open(uploaded_file)
|
101 |
+
|
102 |
+
# Resize the image for display
|
103 |
+
resized_image = image.resize((150, 150))
|
104 |
+
|
105 |
+
# Convert image to base64
|
106 |
+
buffered = BytesIO()
|
107 |
+
resized_image.save(buffered, format="JPEG")
|
108 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
109 |
+
|
110 |
+
# Display the image in the center
|
111 |
+
st.markdown(f"<div style='text-align: center;'><img src='data:image/jpeg;base64,{img_str}' alt='Uploaded Image' width='300'></div>", unsafe_allow_html=True)
|
112 |
+
|
113 |
+
st.write("")
|
114 |
+
st.write("Result...")
|
115 |
+
|
116 |
+
diagnosis = predict(image)
|
117 |
+
st.write(diagnosis)
|