import streamlit as st from PIL import Image import torch from transformers import ViTForImageClassification, ViTImageProcessor import logging import base64 from io import BytesIO # Setup logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # Load the model and feature extractor from Hugging Face repository_id = "EnDevSols/brainmri-vit-model" model = ViTForImageClassification.from_pretrained(repository_id) feature_extractor = ViTImageProcessor.from_pretrained(repository_id) # Function to perform inference def predict(image): # Load and preprocess the image image = image.convert("RGB") inputs = feature_extractor(images=image, return_tensors="pt") # Move the inputs to the appropriate device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) inputs = {k: v.to(device) for k, v in inputs.items()} # Perform inference with torch.no_grad(): outputs = model(**inputs) # Get the predicted label logits = outputs.logits predicted_label = logits.argmax(-1).item() # Map the label to "No" or "Yes" label_map = {0: "No", 1: "Yes"} diagnosis = label_map[predicted_label] # Return a complete statement if diagnosis == "Yes": return "The diagnosis indicates that you have a brain tumor." else: return "The diagnosis indicates that you do not have a brain tumor." # Custom CSS def set_css(style): st.markdown(f"", unsafe_allow_html=True) # Combined dark mode styles combined_css = """ .main, .sidebar .sidebar-content { background-color: #1c1c1c; color: #f0f2f6; } .block-container { padding: 1rem 2rem; background-color: #333; border-radius: 10px; box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.5); } .stButton>button, .stDownloadButton>button { background: linear-gradient(135deg, #ff7e5f, #feb47b); color: white; border: none; padding: 10px 24px; text-align: center; text-decoration: none; display: inline-block; font-size: 16px; margin: 4px 2px; cursor: pointer; border-radius: 5px; } .stSpinner { color: #4CAF50; } .title { font-size: 3rem; font-weight: bold; display: flex; align-items: center; justify-content: center; } .colorful-text { background: -webkit-linear-gradient(135deg, #ff7e5f, #feb47b); -webkit-background-clip: text; -webkit-text-fill-color: transparent; } .black-white-text { color: black; } .small-input .stTextInput>div>input { height: 2rem; font-size: 0.9rem; } .small-file-uploader .stFileUploader>div>div { height: 2rem; font-size: 0.9rem; } .custom-text { font-size: 1.2rem; color: #feb47b; text-align: center; margin-top: -20px; margin-bottom: 20px; } """ # Streamlit application st.set_page_config(layout="wide") st.markdown(f"", unsafe_allow_html=True) st.markdown('
Brain MRI Tumor Detection
', unsafe_allow_html=True) st.markdown('
Upload an MRI image to detect brain tumor
', unsafe_allow_html=True) # Uploading image uploaded_file = st.file_uploader("Choose an image...", type="jpg") if uploaded_file is not None: image = Image.open(uploaded_file) # Resize the image for display resized_image = image.resize((150, 150)) # Convert image to base64 buffered = BytesIO() resized_image.save(buffered, format="JPEG") img_str = base64.b64encode(buffered.getvalue()).decode() # Display the image in the center st.markdown(f"
Uploaded Image
", unsafe_allow_html=True) st.write("") st.write("Result...") diagnosis = predict(image) st.write(diagnosis)