Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import numpy as np
|
|
5 |
from huggingface_hub import HfApi, hf_hub_download
|
6 |
from PIL import Image
|
7 |
from io import BytesIO
|
|
|
8 |
|
9 |
# Hugging Face credentials
|
10 |
api = HfApi()
|
@@ -39,6 +40,11 @@ def infer_image(model, image):
|
|
39 |
generated_img = (generated_img * 127.5 + 127.5).numpy().astype(np.uint8) # De-normalize to [0, 255]
|
40 |
return generated_img
|
41 |
|
|
|
|
|
|
|
|
|
|
|
42 |
# Custom CSS
|
43 |
combined_css = """
|
44 |
.main, .sidebar .sidebar-content { background-color: #1c1c1c; color: #f0f2f6; }
|
@@ -82,15 +88,24 @@ st.set_page_config(layout="wide")
|
|
82 |
|
83 |
st.markdown(f"<style>{combined_css}</style>", unsafe_allow_html=True)
|
84 |
|
85 |
-
st.markdown('<div class="title"><span class="colorful-text">Photo</span> <span class="black-white-text">to
|
86 |
-
st.markdown('<div class="custom-text">Convert
|
87 |
|
88 |
# Streamlit UI
|
89 |
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
|
|
|
90 |
|
|
|
91 |
if uploaded_file is not None:
|
92 |
-
# Load and display the uploaded image
|
93 |
image = Image.open(uploaded_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
if st.button("Run Inference"):
|
96 |
# Perform inference
|
|
|
5 |
from huggingface_hub import HfApi, hf_hub_download
|
6 |
from PIL import Image
|
7 |
from io import BytesIO
|
8 |
+
import requests
|
9 |
|
10 |
# Hugging Face credentials
|
11 |
api = HfApi()
|
|
|
40 |
generated_img = (generated_img * 127.5 + 127.5).numpy().astype(np.uint8) # De-normalize to [0, 255]
|
41 |
return generated_img
|
42 |
|
43 |
+
def load_image_from_url(url):
|
44 |
+
response = requests.get(url)
|
45 |
+
img = Image.open(BytesIO(response.content))
|
46 |
+
return img
|
47 |
+
|
48 |
# Custom CSS
|
49 |
combined_css = """
|
50 |
.main, .sidebar .sidebar-content { background-color: #1c1c1c; color: #f0f2f6; }
|
|
|
88 |
|
89 |
st.markdown(f"<style>{combined_css}</style>", unsafe_allow_html=True)
|
90 |
|
91 |
+
st.markdown('<div class="title"><span class="colorful-text">Photo</span> <span class="black-white-text">to Van Gogh</span></div>', unsafe_allow_html=True)
|
92 |
+
st.markdown('<div class="custom-text">Convert photos to Van Gogh style using AI</div>', unsafe_allow_html=True)
|
93 |
|
94 |
# Streamlit UI
|
95 |
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
|
96 |
+
image_url = st.text_input("Or enter an image URL:")
|
97 |
|
98 |
+
image = None
|
99 |
if uploaded_file is not None:
|
|
|
100 |
image = Image.open(uploaded_file)
|
101 |
+
elif image_url:
|
102 |
+
try:
|
103 |
+
image = load_image_from_url(image_url)
|
104 |
+
except Exception as e:
|
105 |
+
st.error(f"Failed to load image from URL: {e}")
|
106 |
+
|
107 |
+
if image is not None:
|
108 |
+
st.image(image, caption='Original Image', use_column_width=True)
|
109 |
|
110 |
if st.button("Run Inference"):
|
111 |
# Perform inference
|