File size: 14,557 Bytes
8f6558d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6163d4d
8f6558d
 
 
 
 
f6621b8
8f6558d
 
 
 
 
 
 
 
f6621b8
8f6558d
f6621b8
8f6558d
 
 
 
 
 
 
 
 
 
 
0d4f794
8f6558d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6163d4d
8f6558d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6163d4d
8f6558d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6163d4d
 
 
 
 
 
 
 
 
8f6558d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import os
import platform
import torch
import gradio as gr
from huggingface_hub import snapshot_download
import uuid
import shutil
from pydub import AudioSegment
import spaces

from src.facerender.pirender_animate import AnimateFromCoeff_PIRender
from src.utils.preprocess import CropAndExtract
from src.test_audio2coeff import Audio2Coeff
from src.facerender.animate import AnimateFromCoeff
from src.generate_batch import get_data
from src.generate_facerender_batch import get_facerender_data
from src.utils.init_path import init_path


def get_source_image(image):
    return image


def toggle_audio_file(choice):
    if choice == False:
        return gr.update(visible=True), gr.update(visible=False)
    else:
        return gr.update(visible=False), gr.update(visible=True)


def ref_video_fn(path_of_ref_video):
    if path_of_ref_video is not None:
        return gr.update(value=True)
    else:
        return gr.update(value=False)


if torch.cuda.is_available():
    device = "cuda"
elif platform.system() == 'Darwin':  # macos
    device = "mps"
else:
    device = "cpu"

os.environ['TORCH_HOME'] = 'checkpoints'

checkpoint_path = 'checkpoints'
config_path = 'src/config'

snapshot_download(repo_id='vinthony/SadTalker-V002rc',
                  local_dir='./checkpoints', local_dir_use_symlinks=True)


def mp3_to_wav(mp3_filename, wav_filename, frame_rate):
    mp3_file = AudioSegment.from_file(file=mp3_filename)
    mp3_file.set_frame_rate(frame_rate).export(wav_filename, format="wav")


@spaces.GPU()
def test(source_image, driven_audio, preprocess='crop',
         still_mode=False,  use_enhancer=False, batch_size=1, size=256,
         pose_style=0,
         facerender='facevid2vid',
         exp_scale=1.0,
         use_ref_video=False,
         ref_video=None,
         ref_info=None,
         use_idle_mode=False,
         length_of_audio=0, use_blink=True,
         result_dir='./results/'):

    sadtalker_paths = init_path(
        checkpoint_path, config_path, size, False, preprocess)

    audio_to_coeff = Audio2Coeff(sadtalker_paths, device)
    preprocess_model = CropAndExtract(sadtalker_paths, device)

    if facerender == 'facevid2vid' and device != 'mps':
        animate_from_coeff = AnimateFromCoeff(
            sadtalker_paths, device)
    elif facerender == 'pirender' or device == 'mps':
        animate_from_coeff = AnimateFromCoeff_PIRender(
            sadtalker_paths, device)
        facerender = 'pirender'
    else:
        raise (RuntimeError('Unknown model: {}'.format(facerender)))

    time_tag = str(uuid.uuid4())
    save_dir = os.path.join(result_dir, time_tag)
    os.makedirs(save_dir, exist_ok=True)

    input_dir = os.path.join(save_dir, 'input')
    os.makedirs(input_dir, exist_ok=True)

    print(source_image)
    pic_path = os.path.join(input_dir, os.path.basename(source_image))
    shutil.move(source_image, input_dir)

    if driven_audio is not None and os.path.isfile(driven_audio):
        audio_path = os.path.join(input_dir, os.path.basename(driven_audio))

        # mp3 to wav
        if '.mp3' in audio_path:
            mp3_to_wav(driven_audio, audio_path.replace('.mp3', '.wav'), 16000)
            audio_path = audio_path.replace('.mp3', '.wav')
        else:
            shutil.move(driven_audio, input_dir)

    elif use_idle_mode:
        # generate audio from this new audio_path
        audio_path = os.path.join(
            input_dir, 'idlemode_'+str(length_of_audio)+'.wav')
        from pydub import AudioSegment
        one_sec_segment = AudioSegment.silent(
            duration=1000*length_of_audio)  # duration in milliseconds
        one_sec_segment.export(audio_path, format="wav")
    else:
        print(use_ref_video, ref_info)
        assert use_ref_video == True and ref_info == 'all'

    if use_ref_video and ref_info == 'all':  # full ref mode
        ref_video_videoname = os.path.basename(ref_video)
        audio_path = os.path.join(save_dir, ref_video_videoname+'.wav')
        print('new audiopath:', audio_path)
        # if ref_video contains audio, set the audio from ref_video.
        cmd = r"ffmpeg -y -hide_banner -loglevel error -i %s %s" % (
            ref_video, audio_path)
        os.system(cmd)

    os.makedirs(save_dir, exist_ok=True)

    # crop image and extract 3dmm from image
    first_frame_dir = os.path.join(save_dir, 'first_frame_dir')
    os.makedirs(first_frame_dir, exist_ok=True)
    first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(
        pic_path, first_frame_dir, preprocess, True, size)

    if first_coeff_path is None:
        raise AttributeError("No face is detected")

    if use_ref_video:
        print('using ref video for genreation')
        ref_video_videoname = os.path.splitext(os.path.split(ref_video)[-1])[0]
        ref_video_frame_dir = os.path.join(save_dir, ref_video_videoname)
        os.makedirs(ref_video_frame_dir, exist_ok=True)
        print('3DMM Extraction for the reference video providing pose')
        ref_video_coeff_path, _, _ = preprocess_model.generate(
            ref_video, ref_video_frame_dir, preprocess, source_image_flag=False)
    else:
        ref_video_coeff_path = None

    if use_ref_video:
        if ref_info == 'pose':
            ref_pose_coeff_path = ref_video_coeff_path
            ref_eyeblink_coeff_path = None
        elif ref_info == 'blink':
            ref_pose_coeff_path = None
            ref_eyeblink_coeff_path = ref_video_coeff_path
        elif ref_info == 'pose+blink':
            ref_pose_coeff_path = ref_video_coeff_path
            ref_eyeblink_coeff_path = ref_video_coeff_path
        elif ref_info == 'all':
            ref_pose_coeff_path = None
            ref_eyeblink_coeff_path = None
        else:
            raise ('error in refinfo')
    else:
        ref_pose_coeff_path = None
        ref_eyeblink_coeff_path = None

    # audio2ceoff
    if use_ref_video and ref_info == 'all':
        # audio_to_coeff.generate(batch, save_dir, pose_style, ref_pose_coeff_path)
        coeff_path = ref_video_coeff_path
    else:
        batch = get_data(first_coeff_path, audio_path, device, ref_eyeblink_coeff_path=ref_eyeblink_coeff_path, still=still_mode,
                         idlemode=use_idle_mode, length_of_audio=length_of_audio, use_blink=use_blink)  # longer audio?
        coeff_path = audio_to_coeff.generate(
            batch, save_dir, pose_style, ref_pose_coeff_path)

    # coeff2video
    data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path, batch_size, still_mode=still_mode,
                               preprocess=preprocess, size=size, expression_scale=exp_scale, facemodel=facerender)
    return_path = animate_from_coeff.generate(
        data, save_dir,  pic_path, crop_info, enhancer='gfpgan' if use_enhancer else None, preprocess=preprocess, img_size=size)
    video_name = data['video_name']
    print(f'The generated video is named {video_name} in {save_dir}')

    del preprocess_model
    del audio_to_coeff
    del animate_from_coeff

    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.synchronize()

    import gc
    gc.collect()

    return return_path


with gr.Blocks(analytics_enabled=False) as demo:
    with gr.Row():
        with gr.Column(variant='panel'):
            with gr.Tabs(elem_id="sadtalker_source_image"):
                with gr.TabItem('Source image'):
                    with gr.Row():
                        source_image = gr.Image(
                            label="Source image", sources="upload", type="filepath", elem_id="img2img_image")

            with gr.Tabs(elem_id="sadtalker_driven_audio"):
                with gr.TabItem('Driving Methods'):
                    gr.Markdown(
                        "Possible driving combinations: <br> 1. Audio only 2. Audio/IDLE Mode + Ref Video(pose, blink, pose+blink) 3. IDLE Mode only 4. Ref Video only (all) ")

                    with gr.Row():
                        driven_audio = gr.Audio(
                            label="Input audio", sources="upload", type="filepath")
                        driven_audio_no = gr.Audio(
                            label="Use IDLE mode, no audio is required", sources="upload", type="filepath", visible=False)

                        with gr.Column():
                            use_idle_mode = gr.Checkbox(
                                label="Use Idle Animation")
                            length_of_audio = gr.Number(
                                value=5, label="The length(seconds) of the generated video.")
                            use_idle_mode.change(toggle_audio_file, inputs=use_idle_mode, outputs=[
                                driven_audio, driven_audio_no])  # todo

                    with gr.Row():
                        ref_video = gr.Video(
                            label="Reference Video", sources="upload", elem_id="vidref")

                        with gr.Column():
                            use_ref_video = gr.Checkbox(
                                label="Use Reference Video")
                            ref_info = gr.Radio(['pose', 'blink', 'pose+blink', 'all'], value='pose', label='Reference Video',
                                                info="How to borrow from reference Video?((fully transfer, aka, video driving mode))")

                        ref_video.change(ref_video_fn, inputs=ref_video, outputs=[
                            use_ref_video])  # todo

        with gr.Column(variant='panel'):
            with gr.Tabs(elem_id="sadtalker_checkbox"):
                with gr.TabItem('Settings'):
                    with gr.Column(variant='panel'):
                        # width = gr.Slider(minimum=64, elem_id="img2img_width", maximum=2048, step=8, label="Manually Crop Width", value=512) # img2img_width
                        # height = gr.Slider(minimum=64, elem_id="img2img_height", maximum=2048, step=8, label="Manually Crop Height", value=512) # img2img_width
                        with gr.Row():
                            pose_style = gr.Slider(
                                minimum=0, maximum=45, step=1, label="Pose style", value=0)
                            exp_weight = gr.Slider(
                                minimum=0, maximum=3, step=0.1, label="expression scale", value=1)
                            blink_every = gr.Checkbox(
                                label="use eye blink", value=True)

                        with gr.Row():
                            size_of_image = gr.Radio(
                                [256, 512], value=256, label='face model resolution', info="use 256/512 model?")
                            preprocess_type = gr.Radio(
                                ['crop', 'resize', 'full', 'extcrop', 'extfull'], value='crop', label='preprocess', info="How to handle input image?")

                        with gr.Row():
                            is_still_mode = gr.Checkbox(
                                label="Still Mode (fewer head motion, works with preprocess `full`)")
                            facerender = gr.Radio(
                                ['facevid2vid', 'pirender'], value='facevid2vid', label='facerender', info="which face render?")

                        with gr.Row():
                            batch_size = gr.Slider(
                                label="batch size in generation", step=1, maximum=10, value=1)
                            enhancer = gr.Checkbox(
                                label="GFPGAN as Face enhancer")

                        submit = gr.Button(
                            'Generate', elem_id="sadtalker_generate", variant='primary')

            with gr.Tabs(elem_id="sadtalker_genearted"):
                gen_video = gr.Video(
                    label="Generated video", format="mp4")

    submit.click(
        fn=test,
        inputs=[source_image,
                driven_audio,
                preprocess_type,
                is_still_mode,
                enhancer,
                batch_size,
                size_of_image,
                pose_style,
                facerender,
                exp_weight,
                use_ref_video,
                ref_video,
                ref_info,
                use_idle_mode,
                length_of_audio,
                blink_every
                ],
        outputs=[gen_video],
    )

    with gr.Row():
        gr.Examples(examples=[
            [
                'examples/source_image/full_body_1.png',
                'examples/driven_audio/bus_chinese.wav',
                'crop',
                True,
                False
            ],
            [
                'examples/source_image/full_body_2.png',
                'examples/driven_audio/japanese.wav',
                'crop',
                False,
                False
            ],
            [
                'examples/source_image/full3.png',
                'examples/driven_audio/deyu.wav',
                'crop',
                False,
                True
            ],
            [
                'examples/source_image/full4.jpeg',
                'examples/driven_audio/eluosi.wav',
                'full',
                False,
                True
            ],
            [
                'examples/source_image/full4.jpeg',
                'examples/driven_audio/imagine.wav',
                'full',
                True,
                True
            ],
            [
                'examples/source_image/full_body_1.png',
                'examples/driven_audio/bus_chinese.wav',
                'full',
                True,
                False
            ],
            [
                'examples/source_image/art_13.png',
                'examples/driven_audio/fayu.wav',
                'resize',
                True,
                False
            ],
            [
                'examples/source_image/art_5.png',
                'examples/driven_audio/chinese_news.wav',
                'resize',
                False,
                False
            ],
            [
                'examples/source_image/art_5.png',
                'examples/driven_audio/RD_Radio31_000.wav',
                'resize',
                True,
                True
            ],
        ],
            inputs=[
            source_image,
            driven_audio,
            preprocess_type,
            is_still_mode,
            enhancer],
            outputs=[gen_video],
            fn=test)

demo.launch(debug=True)