File size: 4,136 Bytes
851751e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
"""
@Author: Haoxi Ran
@Date: 01/03/2024
@Citation: Towards Realistic Scene Generation with LiDAR Diffusion Models

"""
import multiprocessing
from functools import partial

import numpy as np
from scipy.spatial.distance import jensenshannon
from tqdm import tqdm

from . import OUTPUT_TEMPLATE
from .metric_utils import compute_logits, compute_pairwise_cd, \
    compute_pairwise_emd, pcd2bev_sum, compute_pairwise_cd_batch, pcd2bev_bin
from .fid_score import calculate_frechet_distance


def evaluate(reference, samples, metrics, data):
    # perceptual
    if 'frid' in metrics:
        compute_frid(reference, samples, data)
    if 'fsvd' in metrics:
        compute_fsvd(reference, samples, data)
    if 'fpvd' in metrics:
        compute_fpvd(reference, samples, data)

    # reconstruction
    if 'cd' in metrics:
        compute_cd(reference, samples)
    if 'emd' in metrics:
        compute_emd(reference, samples)

    # statistical
    if 'jsd' in metrics:
        compute_jsd(reference, samples, data)
    if 'mmd' in metrics:
        compute_mmd(reference, samples, data)


def compute_cd(reference, samples):
    """
    Calculate score of Chamfer Distance (CD)

    """
    print('Evaluating (CD) ...')
    results = []
    for x, y in zip(reference, samples):
        d = compute_pairwise_cd(x, y)
        results.append(d)
    score = sum(results) / len(results)
    print(OUTPUT_TEMPLATE.format('CD  ', score))


def compute_emd(reference, samples):
    """
    Calculate score of Earth Mover's Distance (EMD)

    """
    print('Evaluating (EMD) ...')
    results = []
    for x, y in zip(reference, samples):
        d = compute_pairwise_emd(x, y)
        results.append(d)
    score = sum(results) / len(results)
    print(OUTPUT_TEMPLATE.format('EMD ', score))


def compute_mmd(reference, samples, data, dist='cd', verbose=True):
    """
    Calculate the score of Minimum Matching Distance (MMD)

    """
    print('Evaluating (MMD) ...')
    assert dist in ['cd', 'emd']
    reference, samples = pcd2bev_bin(data, reference, samples)
    compute_dist_func = compute_pairwise_cd_batch if dist == 'cd' else compute_pairwise_emd
    results = []
    for r in tqdm(reference, disable=not verbose):
        dists = compute_dist_func(r, samples)
        results.append(min(dists))
    score = sum(results) / len(results)
    print(OUTPUT_TEMPLATE.format('MMD ', score))


def compute_jsd(reference, samples, data):
    """
    Calculate the score of Jensen-Shannon Divergence (JSD)

    """
    print('Evaluating (JSD) ...')
    reference, samples = pcd2bev_sum(data, reference, samples)
    reference = (reference / np.sum(reference)).flatten()
    samples = (samples / np.sum(samples)).flatten()
    score = jensenshannon(reference, samples)
    print(OUTPUT_TEMPLATE.format('JSD ', score))


def compute_fd(reference, samples):
    mu1, mu2 = np.mean(reference, axis=0), np.mean(samples, axis=0)
    sigma1, sigma2 = np.cov(reference, rowvar=False), np.cov(samples, rowvar=False)
    distance = calculate_frechet_distance(mu1, sigma1, mu2, sigma2)
    return distance


def compute_frid(reference, samples, data):
    """
    Calculate the score of Fréchet Range Image Distance (FRID)

    """
    print('Evaluating (FRID) ...')
    gt_logits, samples_logits = compute_logits(data, 'range', reference, samples)
    score = compute_fd(gt_logits, samples_logits)
    print(OUTPUT_TEMPLATE.format('FRID', score))


def compute_fsvd(reference, samples, data):
    """
    Calculate the score of Fréchet Sparse Volume Distance (FSVD)

    """
    print('Evaluating (FSVD) ...')
    gt_logits, samples_logits = compute_logits(data, 'voxel', reference, samples)
    score = compute_fd(gt_logits, samples_logits)
    print(OUTPUT_TEMPLATE.format('FSVD', score))


def compute_fpvd(reference, samples, data):
    """
    Calculate the score of Fréchet Point-based Volume Distance (FPVD)

    """
    print('Evaluating (FPVD) ...')
    gt_logits, samples_logits = compute_logits(data, 'point_voxel', reference, samples)
    score = compute_fd(gt_logits, samples_logits)
    print(OUTPUT_TEMPLATE.format('FPVD', score))