Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
from functools import partial | |
import clip | |
from einops import rearrange, repeat | |
import kornia | |
from ...modules.x_transformer import Encoder, TransformerWrapper | |
class AbstractEncoder(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def encode(self, *args, **kwargs): | |
raise NotImplementedError | |
class ClassEmbedder(nn.Module): | |
def __init__(self, embed_dim, n_classes=1000, key='class'): | |
super().__init__() | |
self.key = key | |
self.embedding = nn.Embedding(n_classes, embed_dim) | |
def forward(self, batch, key=None): | |
if key is None: | |
key = self.key | |
# this is for use in crossattn | |
c = batch[key][:, None] | |
c = self.embedding(c) | |
return c | |
class TransformerEmbedder(AbstractEncoder): | |
"""Some transformer encoder layers""" | |
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"): | |
super().__init__() | |
self.device = device | |
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, | |
attn_layers=Encoder(dim=n_embed, depth=n_layer)) | |
def forward(self, tokens): | |
tokens = tokens.to(self.device) # meh | |
z = self.transformer(tokens, return_embeddings=True) | |
return z | |
def encode(self, x): | |
return self(x) | |
class BERTTokenizer(AbstractEncoder): | |
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)""" | |
def __init__(self, device="cuda", vq_interface=True, max_length=77): | |
super().__init__() | |
from transformers import BertTokenizerFast | |
# self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased") | |
self.tokenizer = BertTokenizerFast.from_pretrained('./models/bert') | |
self.device = device | |
self.vq_interface = vq_interface | |
self.max_length = max_length | |
def forward(self, text): | |
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
tokens = batch_encoding["input_ids"].to(self.device) | |
return tokens | |
def encode(self, text): | |
tokens = self(text) | |
if not self.vq_interface: | |
return tokens | |
return None, None, [None, None, tokens] | |
def decode(self, text): | |
return text | |
class BERTEmbedder(AbstractEncoder): | |
"""Uses the BERT tokenizr model and add some transformer encoder layers""" | |
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77, | |
device="cuda", use_tokenizer=True, embedding_dropout=0.0): | |
super().__init__() | |
self.use_tknz_fn = use_tokenizer | |
if self.use_tknz_fn: | |
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len) | |
self.device = device | |
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, | |
attn_layers=Encoder(dim=n_embed, depth=n_layer), | |
emb_dropout=embedding_dropout) | |
def forward(self, text): | |
if self.use_tknz_fn: | |
tokens = self.tknz_fn(text) # .to(self.device) | |
else: | |
tokens = text | |
z = self.transformer(tokens, return_embeddings=True) | |
return z | |
def encode(self, text): | |
# output of length 77 | |
return self(text) | |
class SpatialRescaler(nn.Module): | |
def __init__(self, | |
strides=[], | |
method='bilinear', | |
in_channels=3, | |
out_channels=None, | |
bias=False): | |
super().__init__() | |
self.strides = strides | |
assert method in ['nearest', 'linear', 'bilinear', 'trilinear', 'bicubic', 'area'] | |
self.interpolator = partial(torch.nn.functional.interpolate, mode=method, align_corners=True) | |
self.remap_output = out_channels is not None | |
if self.remap_output: | |
print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.') | |
self.channel_mapper = nn.Conv2d(in_channels, out_channels, 1, bias=bias) | |
def forward(self, x): | |
for h_s, w_s in self.strides: | |
x = self.interpolator(x, scale_factor=(1/h_s, 1/w_s)) | |
if self.remap_output: | |
x = self.channel_mapper(x) | |
return x | |
def encode(self, x): | |
return self(x) | |
class FrozenCLIPTextEmbedder(nn.Module): | |
""" | |
Uses the CLIP transformer encoder for text. | |
""" | |
def __init__(self, version='ViT-L/14', device="cuda", max_length=77, n_repeat=1, normalize=True): | |
super().__init__() | |
self.model, _ = clip.load(version, jit=False, device="cpu") | |
self.model.to(device) | |
self.device = device | |
self.max_length = max_length | |
self.n_repeat = n_repeat | |
self.normalize = normalize | |
def freeze(self): | |
self.model = self.model.eval() | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
tokens = clip.tokenize(text).to(self.device) | |
z = self.model.encode_text(tokens) | |
if self.normalize: | |
z = z / torch.linalg.norm(z, dim=1, keepdim=True) | |
return z | |
def encode(self, text): | |
z = self(text) | |
if z.ndim == 2: | |
z = z[:, None, :] | |
z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat) | |
return z | |
class FrozenClipMultiTextEmbedder(FrozenCLIPTextEmbedder): | |
def __init__(self, num_views=1, apply_all=False, **kwargs): | |
super().__init__(**kwargs) | |
self.num_views = num_views | |
self.apply_all = apply_all | |
def encode(self, text): | |
z = self(text) | |
if z.ndim == 2: | |
z = z[:, None, :] | |
if not self.apply_all: | |
new_z = torch.zeros(*z.shape[:2], z.shape[2] * self.num_views, device=z.device) | |
new_z[:, :, self.num_views // 2 * z.shape[2]: (self.num_views // 2 + 1) * z.shape[2]] = z | |
else: | |
new_z = repeat(z, 'b 1 d -> b 1 (d m)', m=self.num_views) | |
return new_z | |
class FrozenClipImageEmbedder(nn.Module): | |
""" | |
Uses the CLIP image encoder. | |
""" | |
def __init__( | |
self, | |
model, | |
jit=False, | |
device='cuda' if torch.cuda.is_available() else 'cpu', | |
antialias=False, | |
): | |
super().__init__() | |
self.model, _ = clip.load(name=model, device='cpu', jit=jit) | |
self.init() | |
self.antialias = antialias | |
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) | |
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) | |
def init(self): | |
for param in self.model.parameters(): | |
param.requires_grad = False | |
self.model.eval() | |
def preprocess(self, x): | |
x = kornia.geometry.resize(x, (224, 224), | |
interpolation='bicubic', align_corners=True, | |
antialias=self.antialias) | |
# x = (x + 1.) / 2. | |
# renormalize according to clip | |
x = kornia.enhance.normalize(x, self.mean, self.std) | |
return x | |
def forward(self, x): | |
# x is assumed to be in range [0,1] | |
return self.model.encode_image(self.preprocess(x)) | |
class FrozenClipMultiImageEmbedder(FrozenClipImageEmbedder): | |
""" | |
Uses the CLIP image encoder with multi-image as input. | |
""" | |
def __init__(self, num_views=1, split_per_view=1, img_dim=768, out_dim=512, key='camera', **kwargs): | |
super().__init__(**kwargs) | |
self.split_per_view = split_per_view | |
self.key = key | |
self.linear = nn.Linear(img_dim, out_dim) | |
self.view_embedding = nn.Parameter(img_dim ** -0.5 * torch.randn((1, num_views * split_per_view, img_dim))) | |
def forward(self, x): | |
# x is assumed to be in range [0,1] | |
if isinstance(x, torch.Tensor) and x.ndim == 5: | |
x = x.permute(1, 0, 2, 3, 4) | |
elif isinstance(x, dict): | |
x = x[self.key] | |
elif isinstance(x, torch.Tensor) and x.ndim == 3: | |
x = self.linear(x) | |
return x | |
with torch.no_grad(): | |
img_feats = [self.model.encode_image(self.preprocess(img))[:, None] for img in x] | |
x = torch.cat(img_feats, 1).float() + self.view_embedding | |
x = self.linear(x) | |
return x | |
class FrozenClipImagePatchEmbedder(nn.Module): | |
""" | |
Uses the CLIP image encoder. | |
""" | |
def __init__( | |
self, | |
model, | |
jit=False, | |
device='cuda' if torch.cuda.is_available() else 'cpu', | |
antialias=False, | |
img_dim=1024, | |
out_dim=512, | |
num_views=1, | |
split_per_view=1 | |
): | |
super().__init__() | |
self.model, _ = clip.load(name=model, device='cpu', jit=jit) | |
self.init() | |
self.antialias = antialias | |
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) | |
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) | |
self.view_embedding = nn.Parameter(img_dim ** -0.5 * torch.randn((1, num_views * split_per_view, 1, img_dim))) | |
self.linear = nn.Linear(img_dim, out_dim) | |
def init(self): | |
for param in self.model.parameters(): | |
param.requires_grad = False | |
self.model.eval() | |
def preprocess(self, x): | |
x = kornia.geometry.resize(x, (224, 224), | |
interpolation='bicubic', align_corners=True, | |
antialias=self.antialias) | |
# x = (x + 1.) / 2. | |
# renormalize according to clip | |
x = kornia.enhance.normalize(x, self.mean, self.std) | |
return x | |
def encode_image_patch(self, x): | |
visual_encoder = self.model.visual | |
x = x.type(self.model.dtype) | |
x = visual_encoder.conv1(x) # shape = [*, width, grid, grid] | |
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] | |
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] | |
x = torch.cat([visual_encoder.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] | |
x = x + visual_encoder.positional_embedding.to(x.dtype) | |
x = visual_encoder.ln_pre(x) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = visual_encoder.transformer(x) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
x = x[:, 1:, :] | |
return x | |
def forward(self, x): | |
# x is assumed to be in range [0,1] | |
img_feats = [self.encode_image_patch(self.preprocess(img))[:, None] for img in x] | |
x = torch.cat(img_feats, 1).float() + self.view_embedding | |
x = rearrange(x, 'b v n c -> b (v n) c') | |
x = self.linear(x) | |
return x | |