Spaces:
Running
Running
model: | |
base_learning_rate: 1.0e-06 | |
target: lidm.models.diffusion.ddpm.LatentDiffusion | |
params: | |
linear_start: 0.0015 | |
linear_end: 0.0205 | |
num_timesteps_cond: 1 | |
log_every_t: 100 | |
timesteps: 1000 | |
image_size: [16, 128] | |
channels: 8 | |
monitor: val/loss_simple_ema | |
first_stage_key: image | |
cond_stage_key: segmentation | |
concat_mode: true | |
cond_stage_trainable: true | |
verbose: false | |
unet_config: | |
target: lidm.modules.diffusion.openaimodel.UNetModel | |
params: | |
image_size: [16, 128] | |
in_channels: 16 | |
out_channels: 8 | |
model_channels: 256 | |
attention_resolutions: [4, 2, 1] | |
num_res_blocks: 2 | |
channel_mult: [1, 2, 4] | |
num_head_channels: 32 | |
lib_name: lidm | |
first_stage_config: | |
target: lidm.models.autoencoder.VQModelInterface | |
params: | |
embed_dim: 8 | |
n_embed: 16384 | |
lib_name: lidm | |
use_mask: False # False | |
ckpt_path: models/first_stage_models/kitti/f_c2_p4_wo_logscale/model.ckpt | |
ddconfig: | |
double_z: false | |
z_channels: 8 | |
in_channels: 1 | |
out_ch: 1 | |
ch: 64 | |
ch_mult: [1,2,2,4] | |
strides: [[1,2],[2,2],[2,2]] | |
num_res_blocks: 2 | |
attn_levels: [] | |
dropout: 0.0 | |
lossconfig: | |
target: torch.nn.Identity | |
cond_stage_config: | |
target: lidm.modules.encoders.modules.SpatialRescaler | |
params: | |
strides: [[1,2],[2,2],[2,2]] | |
in_channels: 20 | |
out_channels: 8 | |
data: | |
target: main.DataModuleFromConfig | |
params: | |
batch_size: 16 | |
num_workers: 8 | |
wrap: true | |
dataset: | |
size: [64, 1024] | |
fov: [ 3,-25 ] | |
depth_range: [ 1.0,56.0 ] | |
depth_scale: 56 # np.log2(depth_max + 1) | |
log_scale: false | |
x_range: [ -50.0, 50.0 ] | |
y_range: [ -50.0, 50.0 ] | |
z_range: [ -3.0, 1.0 ] | |
resolution: 1 | |
num_channels: 1 | |
num_cats: 10 | |
num_views: 2 | |
num_sem_cats: 19 | |
filtered_map_cats: [ ] | |
aug: | |
flip: true | |
rotate: false | |
keypoint_drop: false | |
keypoint_drop_range: [ 5,20 ] | |
randaug: false | |
train: | |
target: lidm.data.kitti.SemanticKITTITrain | |
params: | |
condition_key: segmentation | |
validation: | |
target: lidm.data.kitti.SemanticKITTIValidation | |
params: | |
condition_key: segmentation | |
lightning: | |
callbacks: | |
image_logger: | |
target: main.ImageLogger | |
params: | |
batch_frequency: 5000 | |
max_images: 8 | |
increase_log_steps: False | |
trainer: | |
benchmark: true |