Spaces:
Running
Running
modify on ZeroGPU
Browse files- app.py +12 -5
- app_config.py +0 -1
- sample_cond.py +4 -12
app.py
CHANGED
@@ -1,15 +1,20 @@
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
-
import tempfile
|
4 |
import os
|
5 |
import torch
|
6 |
import numpy as np
|
7 |
from matplotlib.colors import LinearSegmentedColormap
|
8 |
|
9 |
-
from app_config import CSS, HEADER, FOOTER
|
10 |
-
import
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
def create_custom_colormap():
|
@@ -33,7 +38,7 @@ def colorize_depth(depth, log_scale):
|
|
33 |
@spaces.GPU
|
34 |
@torch.no_grad()
|
35 |
def generate_lidar(model, cond):
|
36 |
-
img, pcd =
|
37 |
return img, pcd
|
38 |
|
39 |
|
@@ -46,6 +51,8 @@ def load_camera(image):
|
|
46 |
return camera_cond
|
47 |
|
48 |
|
|
|
|
|
49 |
with gr.Blocks(css=CSS) as demo:
|
50 |
gr.Markdown(HEADER)
|
51 |
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
|
|
3 |
import os
|
4 |
import torch
|
5 |
import numpy as np
|
6 |
from matplotlib.colors import LinearSegmentedColormap
|
7 |
|
8 |
+
from app_config import CSS, HEADER, FOOTER
|
9 |
+
from sample_cond import CKPT_PATH, MODEL_CFG, load_model_from_config, sample
|
10 |
|
11 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
12 |
+
|
13 |
+
|
14 |
+
def load_model():
|
15 |
+
pl_sd = torch.load(CKPT_PATH, map_location="cpu")
|
16 |
+
model = load_model_from_config(MODEL_CFG.model, pl_sd["state_dict"])
|
17 |
+
return model
|
18 |
|
19 |
|
20 |
def create_custom_colormap():
|
|
|
38 |
@spaces.GPU
|
39 |
@torch.no_grad()
|
40 |
def generate_lidar(model, cond):
|
41 |
+
img, pcd = sample(model, cond)
|
42 |
return img, pcd
|
43 |
|
44 |
|
|
|
51 |
return camera_cond
|
52 |
|
53 |
|
54 |
+
model = load_model().to(DEVICE)
|
55 |
+
|
56 |
with gr.Blocks(css=CSS) as demo:
|
57 |
gr.Markdown(HEADER)
|
58 |
|
app_config.py
CHANGED
@@ -14,7 +14,6 @@ CSS = """
|
|
14 |
max-height: 70vh;
|
15 |
}
|
16 |
"""
|
17 |
-
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
18 |
|
19 |
HEADER = '''
|
20 |
# LiDAR Diffusion
|
|
|
14 |
max-height: 70vh;
|
15 |
}
|
16 |
"""
|
|
|
17 |
|
18 |
HEADER = '''
|
19 |
# LiDAR Diffusion
|
sample_cond.py
CHANGED
@@ -6,9 +6,8 @@ from omegaconf import OmegaConf
|
|
6 |
from PIL import Image
|
7 |
|
8 |
from lidm.models.diffusion.ddim import DDIMSampler
|
9 |
-
from lidm.utils.misc_utils import instantiate_from_config
|
10 |
from lidm.utils.lidar_utils import range2pcd
|
11 |
-
from app_config import DEVICE
|
12 |
|
13 |
|
14 |
CUSTOM_STEPS = 50
|
@@ -20,7 +19,7 @@ CFG_PATH = os.path.join(MODEL_PATH, 'config.yaml')
|
|
20 |
CKPT_PATH = os.path.join(MODEL_PATH, 'model.ckpt')
|
21 |
|
22 |
# settings
|
23 |
-
|
24 |
|
25 |
|
26 |
def custom_to_pcd(x, config, rgb=None):
|
@@ -64,20 +63,13 @@ def logs2pil(logs, keys=["sample"]):
|
|
64 |
return imgs
|
65 |
|
66 |
|
67 |
-
def load_model_from_config(config, sd
|
68 |
model = instantiate_from_config(config)
|
69 |
model.load_state_dict(sd, strict=False)
|
70 |
-
model.to(device)
|
71 |
model.eval()
|
72 |
return model
|
73 |
|
74 |
|
75 |
-
def load_model():
|
76 |
-
pl_sd = torch.load(CKPT_PATH, map_location="cpu")
|
77 |
-
model = load_model_from_config(model_config.model, pl_sd["state_dict"], DEVICE)
|
78 |
-
return model
|
79 |
-
|
80 |
-
|
81 |
@torch.no_grad()
|
82 |
def convsample_ddim(model, cond, steps, shape, eta=1.0, verbose=False):
|
83 |
ddim = DDIMSampler(model)
|
@@ -103,7 +95,7 @@ def make_convolutional_sample(model, batch, batch_size, custom_steps=None, eta=1
|
|
103 |
def sample(model, cond):
|
104 |
batch = {'camera': cond}
|
105 |
img = make_convolutional_sample(model, batch, batch_size=1, custom_steps=CUSTOM_STEPS, eta=ETA) # TODO add arguments for batch_size, custom_steps and eta
|
106 |
-
pcd = custom_to_pcd(img,
|
107 |
img = img.squeeze().detach().cpu().numpy()
|
108 |
return img, pcd
|
109 |
|
|
|
6 |
from PIL import Image
|
7 |
|
8 |
from lidm.models.diffusion.ddim import DDIMSampler
|
9 |
+
from lidm.utils.misc_utils import instantiate_from_config
|
10 |
from lidm.utils.lidar_utils import range2pcd
|
|
|
11 |
|
12 |
|
13 |
CUSTOM_STEPS = 50
|
|
|
19 |
CKPT_PATH = os.path.join(MODEL_PATH, 'model.ckpt')
|
20 |
|
21 |
# settings
|
22 |
+
MODEL_CFG = OmegaConf.load(CFG_PATH)
|
23 |
|
24 |
|
25 |
def custom_to_pcd(x, config, rgb=None):
|
|
|
63 |
return imgs
|
64 |
|
65 |
|
66 |
+
def load_model_from_config(config, sd):
|
67 |
model = instantiate_from_config(config)
|
68 |
model.load_state_dict(sd, strict=False)
|
|
|
69 |
model.eval()
|
70 |
return model
|
71 |
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
@torch.no_grad()
|
74 |
def convsample_ddim(model, cond, steps, shape, eta=1.0, verbose=False):
|
75 |
ddim = DDIMSampler(model)
|
|
|
95 |
def sample(model, cond):
|
96 |
batch = {'camera': cond}
|
97 |
img = make_convolutional_sample(model, batch, batch_size=1, custom_steps=CUSTOM_STEPS, eta=ETA) # TODO add arguments for batch_size, custom_steps and eta
|
98 |
+
pcd = custom_to_pcd(img, MODEL_CFG)[0].astype(np.float32)
|
99 |
img = img.squeeze().detach().cpu().numpy()
|
100 |
return img, pcd
|
101 |
|