import os import torch import yaml from lidm.utils.misc_utils import dict2namespace from ..modules.rangenet.model import Model as rangenet try: from ..modules.spvcnn.model import Model as spvcnn from ..modules.minkowskinet.model import Model as minkowskinet except: print('To install torchsparse 1.4.0, please refer to https://github.com/mit-han-lab/torchsparse/tree/74099d10a51c71c14318bce63d6421f698b24f24') DEFAULT_ROOT = './pretrained_weights' def build_model(dataset_name, model_name, device='cpu'): # config model_folder = os.path.join(DEFAULT_ROOT, dataset_name, model_name) if not os.path.isdir(model_folder): raise Exception('Not Available Pretrained Weights!') config = yaml.safe_load(open(os.path.join(model_folder, 'config.yaml'), 'r')) if model_name != 'rangenet': config = dict2namespace(config) # build model model = eval(model_name)(config) # load checkpoint if model_name == 'rangenet': model.load_pretrained_weights(model_folder) else: ckpt = torch.load(os.path.join(model_folder, 'model.ckpt'), map_location="cpu") model.load_state_dict(ckpt['state_dict'], strict=False) model.to(device) model.eval() return model