import torch import torch.nn as nn from functools import partial import clip from einops import rearrange, repeat import kornia from ...modules.x_transformer import Encoder, TransformerWrapper class AbstractEncoder(nn.Module): def __init__(self): super().__init__() def encode(self, *args, **kwargs): raise NotImplementedError class ClassEmbedder(nn.Module): def __init__(self, embed_dim, n_classes=1000, key='class'): super().__init__() self.key = key self.embedding = nn.Embedding(n_classes, embed_dim) def forward(self, batch, key=None): if key is None: key = self.key # this is for use in crossattn c = batch[key][:, None] c = self.embedding(c) return c class TransformerEmbedder(AbstractEncoder): """Some transformer encoder layers""" def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"): super().__init__() self.device = device self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, attn_layers=Encoder(dim=n_embed, depth=n_layer)) def forward(self, tokens): tokens = tokens.to(self.device) # meh z = self.transformer(tokens, return_embeddings=True) return z def encode(self, x): return self(x) class BERTTokenizer(AbstractEncoder): """ Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)""" def __init__(self, device="cuda", vq_interface=True, max_length=77): super().__init__() from transformers import BertTokenizerFast # self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased") self.tokenizer = BertTokenizerFast.from_pretrained('./models/bert') self.device = device self.vq_interface = vq_interface self.max_length = max_length def forward(self, text): batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, return_overflowing_tokens=False, padding="max_length", return_tensors="pt") tokens = batch_encoding["input_ids"].to(self.device) return tokens @torch.no_grad() def encode(self, text): tokens = self(text) if not self.vq_interface: return tokens return None, None, [None, None, tokens] def decode(self, text): return text class BERTEmbedder(AbstractEncoder): """Uses the BERT tokenizr model and add some transformer encoder layers""" def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77, device="cuda", use_tokenizer=True, embedding_dropout=0.0): super().__init__() self.use_tknz_fn = use_tokenizer if self.use_tknz_fn: self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len) self.device = device self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, attn_layers=Encoder(dim=n_embed, depth=n_layer), emb_dropout=embedding_dropout) def forward(self, text): if self.use_tknz_fn: tokens = self.tknz_fn(text) # .to(self.device) else: tokens = text z = self.transformer(tokens, return_embeddings=True) return z def encode(self, text): # output of length 77 return self(text) class SpatialRescaler(nn.Module): def __init__(self, strides=[], method='bilinear', in_channels=3, out_channels=None, bias=False): super().__init__() self.strides = strides assert method in ['nearest', 'linear', 'bilinear', 'trilinear', 'bicubic', 'area'] self.interpolator = partial(torch.nn.functional.interpolate, mode=method, align_corners=True) self.remap_output = out_channels is not None if self.remap_output: print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.') self.channel_mapper = nn.Conv2d(in_channels, out_channels, 1, bias=bias) def forward(self, x): for h_s, w_s in self.strides: x = self.interpolator(x, scale_factor=(1/h_s, 1/w_s)) if self.remap_output: x = self.channel_mapper(x) return x def encode(self, x): return self(x) class FrozenCLIPTextEmbedder(nn.Module): """ Uses the CLIP transformer encoder for text. """ def __init__(self, version='ViT-L/14', device="cuda", max_length=77, n_repeat=1, normalize=True): super().__init__() self.model, _ = clip.load(version, jit=False, device="cpu") self.model.to(device) self.device = device self.max_length = max_length self.n_repeat = n_repeat self.normalize = normalize def freeze(self): self.model = self.model.eval() for param in self.parameters(): param.requires_grad = False def forward(self, text): tokens = clip.tokenize(text).to(self.device) z = self.model.encode_text(tokens) if self.normalize: z = z / torch.linalg.norm(z, dim=1, keepdim=True) return z def encode(self, text): z = self(text) if z.ndim == 2: z = z[:, None, :] z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat) return z class FrozenClipMultiTextEmbedder(FrozenCLIPTextEmbedder): def __init__(self, num_views=1, apply_all=False, **kwargs): super().__init__(**kwargs) self.num_views = num_views self.apply_all = apply_all def encode(self, text): z = self(text) if z.ndim == 2: z = z[:, None, :] if not self.apply_all: new_z = torch.zeros(*z.shape[:2], z.shape[2] * self.num_views, device=z.device) new_z[:, :, self.num_views // 2 * z.shape[2]: (self.num_views // 2 + 1) * z.shape[2]] = z else: new_z = repeat(z, 'b 1 d -> b 1 (d m)', m=self.num_views) return new_z class FrozenClipImageEmbedder(nn.Module): """ Uses the CLIP image encoder. """ def __init__( self, model, jit=False, device='cuda' if torch.cuda.is_available() else 'cpu', antialias=False, ): super().__init__() self.model, _ = clip.load(name=model, device='cpu', jit=jit) self.init() self.antialias = antialias self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) def init(self): for param in self.model.parameters(): param.requires_grad = False self.model.eval() def preprocess(self, x): x = kornia.geometry.resize(x, (224, 224), interpolation='bicubic', align_corners=True, antialias=self.antialias) # x = (x + 1.) / 2. # renormalize according to clip x = kornia.enhance.normalize(x, self.mean, self.std) return x def forward(self, x): # x is assumed to be in range [0,1] return self.model.encode_image(self.preprocess(x)) class FrozenClipMultiImageEmbedder(FrozenClipImageEmbedder): """ Uses the CLIP image encoder with multi-image as input. """ def __init__(self, num_views=1, split_per_view=1, img_dim=768, out_dim=512, key='camera', **kwargs): super().__init__(**kwargs) self.split_per_view = split_per_view self.key = key self.linear = nn.Linear(img_dim, out_dim) self.view_embedding = nn.Parameter(img_dim ** -0.5 * torch.randn((1, num_views * split_per_view, img_dim))) def forward(self, x): # x is assumed to be in range [0,1] if isinstance(x, torch.Tensor) and x.ndim == 5: x = x.permute(1, 0, 2, 3, 4) elif isinstance(x, dict): x = x[self.key] elif isinstance(x, torch.Tensor) and x.ndim == 3: x = self.linear(x) return x with torch.no_grad(): img_feats = [self.model.encode_image(self.preprocess(img))[:, None] for img in x] x = torch.cat(img_feats, 1).float() + self.view_embedding x = self.linear(x) return x class FrozenClipImagePatchEmbedder(nn.Module): """ Uses the CLIP image encoder. """ def __init__( self, model, jit=False, device='cuda' if torch.cuda.is_available() else 'cpu', antialias=False, img_dim=1024, out_dim=512, num_views=1, split_per_view=1 ): super().__init__() self.model, _ = clip.load(name=model, device='cpu', jit=jit) self.init() self.antialias = antialias self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) self.view_embedding = nn.Parameter(img_dim ** -0.5 * torch.randn((1, num_views * split_per_view, 1, img_dim))) self.linear = nn.Linear(img_dim, out_dim) def init(self): for param in self.model.parameters(): param.requires_grad = False self.model.eval() def preprocess(self, x): x = kornia.geometry.resize(x, (224, 224), interpolation='bicubic', align_corners=True, antialias=self.antialias) # x = (x + 1.) / 2. # renormalize according to clip x = kornia.enhance.normalize(x, self.mean, self.std) return x def encode_image_patch(self, x): visual_encoder = self.model.visual x = x.type(self.model.dtype) x = visual_encoder.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] x = torch.cat([visual_encoder.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + visual_encoder.positional_embedding.to(x.dtype) x = visual_encoder.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND x = visual_encoder.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = x[:, 1:, :] return x def forward(self, x): # x is assumed to be in range [0,1] img_feats = [self.encode_image_patch(self.preprocess(img))[:, None] for img in x] x = torch.cat(img_feats, 1).float() + self.view_embedding x = rearrange(x, 'b v n c -> b (v n) c') x = self.linear(x) return x