import gradio as gr import requests from io import BytesIO url = 'http://188.166.196.227:8000/predict' def inference(input_image): # Convert the PIL image to bytes img_bytes = BytesIO() input_image.save(img_bytes, format='JPEG') # Send the POST request with the image data as 'image' key files = {'image': ('input.jpg', img_bytes.getvalue(), 'image/jpeg')} response = requests.post(url, files=files) # Check if the request was successful (status code 200) if response.status_code == 200: return response.json() else: print("POST request failed with status code:", response.status_code) title = "SeeFood102" description = "Gradio frontend for SeeFood102, the expansion edition of SeeFood101. Note: due to cost, I shutdown the K8S cluster backend." examples = [ ['Screenshot 2023-05-05 085533.png'] ] iface = gr.Interface(fn=inference, inputs=gr.Image(type="pil"), outputs=gr.Label(num_top_classes=5), title=title, description=description, examples=examples, analytics_enabled=False) iface.launch()