Spaces:
Sleeping
Sleeping
Haniyamsohail
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
3 |
+
|
4 |
+
# Initialize the model
|
5 |
+
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
|
6 |
+
model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq")
|
7 |
+
retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", use_dummy_dataset=True)
|
8 |
+
|
9 |
+
# Streamlit UI
|
10 |
+
st.title("AI Health Assistant (RAG-based)")
|
11 |
+
|
12 |
+
def get_answer_rag(question):
|
13 |
+
inputs = tokenizer(question, return_tensors="pt")
|
14 |
+
retrieved_docs = retriever.retrieve(inputs['input_ids'], top_k=3)
|
15 |
+
outputs = model.generate(input_ids=inputs['input_ids'], context_input_ids=retrieved_docs['input_ids'])
|
16 |
+
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
17 |
+
return answer
|
18 |
+
|
19 |
+
# Ask the user for a health-related question
|
20 |
+
question = st.text_input("Ask a health-related question:")
|
21 |
+
if question:
|
22 |
+
answer = get_answer_rag(question)
|
23 |
+
st.write(f"Answer: {answer}")
|