|
import os |
|
|
|
from typing import Union |
|
|
|
from tclogger import logger |
|
from transformers import AutoModel |
|
from numpy.linalg import norm |
|
|
|
from configs.envs import ENVS |
|
from configs.constants import AVAILABLE_MODELS |
|
|
|
os.environ["HF_ENDPOINT"] = ENVS["HF_ENDPOINT"] |
|
os.environ["HF_TOKEN"] = ENVS["HF_TOKEN"] |
|
|
|
|
|
def cosine_similarity(a, b): |
|
return (a @ b.T) / (norm(a) * norm(b)) |
|
|
|
|
|
class JinaAIEmbedder: |
|
def __init__(self, model_name: str = AVAILABLE_MODELS[0]): |
|
self.model_name = model_name |
|
self.load_model() |
|
|
|
def check_model_name(self): |
|
if self.model_name not in AVAILABLE_MODELS: |
|
self.model_name = AVAILABLE_MODELS[0] |
|
return True |
|
|
|
def load_model(self): |
|
self.check_model_name() |
|
self.model = AutoModel.from_pretrained(self.model_name, trust_remote_code=True) |
|
|
|
def switch_model(self, model_name: str): |
|
if model_name != self.model_name: |
|
self.model_name = model_name |
|
self.load_model() |
|
|
|
def encode(self, text: Union[str, list[str]]): |
|
if isinstance(text, str): |
|
text = [text] |
|
return self.model.encode(text) |
|
|
|
|
|
if __name__ == "__main__": |
|
embedder = JinaAIEmbedder() |
|
text = ["How is the weather today?", "今天天气怎么样?"] |
|
|
|
embeddings = embedder.encode(text) |
|
logger.success(embeddings) |
|
|
|
|