File size: 10,062 Bytes
cd6b52a
 
 
 
 
 
 
 
 
 
 
 
 
 
3061fdd
cd6b52a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3061fdd
 
 
 
cd6b52a
397529a
 
 
cd6b52a
 
 
 
 
 
 
 
 
 
397529a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd6b52a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3061fdd
 
 
 
cd6b52a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3061fdd
 
 
 
cd6b52a
 
 
3061fdd
cd6b52a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3061fdd
cd6b52a
 
 
 
 
d36d623
 
 
 
cd6b52a
 
 
 
 
 
 
 
 
 
 
0f710a2
 
cd6b52a
0f710a2
 
 
cd6b52a
 
3061fdd
cd6b52a
0f710a2
cd6b52a
 
0f710a2
3061fdd
 
 
cd6b52a
397529a
cd6b52a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b40b5fc
cd6b52a
 
 
 
 
 
 
 
 
 
397529a
 
cd6b52a
 
 
 
 
 
 
 
 
 
 
 
397529a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3061fdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import copy
import json
import re
import tiktoken
import uuid

from curl_cffi import requests
from tclogger import logger

from constants.envs import PROXIES
from constants.headers import OPENAI_GET_HEADERS, OPENAI_POST_DATA
from constants.models import TOKEN_LIMIT_MAP, TOKEN_RESERVED

from messagers.message_outputer import OpenaiStreamOutputer
from networks.proof_worker import ProofWorker


class OpenaiRequester:
    def __init__(self):
        self.init_requests_params()

    def init_requests_params(self):
        self.api_base = "https://chat.openai.com/backend-anon"
        self.api_me = f"{self.api_base}/me"
        self.api_models = f"{self.api_base}/models"
        self.api_chat_requirements = f"{self.api_base}/sentinel/chat-requirements"
        self.api_conversation = f"{self.api_base}/conversation"
        self.uuid = str(uuid.uuid4())
        self.requests_headers = copy.deepcopy(OPENAI_GET_HEADERS)
        extra_headers = {
            "Oai-Device-Id": self.uuid,
        }
        self.requests_headers.update(extra_headers)

    def log_request(self, url, method="GET", verbose=False):
        if verbose:
            logger.note(f"> {method}:", end=" ")
            logger.mesg(f"{url}", end=" ")

    def log_response(
        self, res: requests.Response, stream=False, iter_lines=False, verbose=False
    ):
        status_code = res.status_code
        status_code_str = f"[{status_code}]"

        if status_code == 200:
            logger_func = logger.success
        else:
            logger_func = logger.warn

        logger_func(status_code_str)

        logger.enter_quiet(not verbose)

        if stream:
            if not iter_lines:
                return

            if not hasattr(self, "content_offset"):
                self.content_offset = 0

            for line in res.iter_lines():
                line = line.decode("utf-8")
                line = re.sub(r"^data:\s*", "", line)
                if re.match(r"^\[DONE\]", line):
                    logger.success("\n[Finished]")
                    break
                line = line.strip()
                if line:
                    try:
                        data = json.loads(line, strict=False)
                        message_role = data["message"]["author"]["role"]
                        message_status = data["message"]["status"]
                        if (
                            message_role == "assistant"
                            and message_status == "in_progress"
                        ):
                            content = data["message"]["content"]["parts"][0]
                            delta_content = content[self.content_offset :]
                            self.content_offset = len(content)
                            logger_func(delta_content, end="")
                    except Exception as e:
                        logger.warn(e)
        else:
            logger_func(res.json())

        logger.exit_quiet(not verbose)

    def get_models(self):
        self.log_request(self.api_models)
        res = requests.get(
            self.api_models,
            headers=self.requests_headers,
            proxies=PROXIES,
            timeout=10,
            impersonate="chrome120",
        )
        self.log_response(res)

    def auth(self):
        self.log_request(self.api_chat_requirements, method="POST")
        res = requests.post(
            self.api_chat_requirements,
            headers=self.requests_headers,
            proxies=PROXIES,
            timeout=10,
            impersonate="chrome120",
        )
        data = res.json()
        self.chat_requirements_token = data["token"]
        self.chat_requirements_seed = data["proofofwork"]["seed"]
        self.chat_requirements_difficulty = data["proofofwork"]["difficulty"]
        self.log_response(res)

    def transform_messages(self, messages: list[dict]):
        def get_role(role):
            if role in ["system", "user", "assistant"]:
                return role
            else:
                return "system"

        new_messages = [
            {
                "author": {"role": get_role(message["role"])},
                "content": {"content_type": "text", "parts": [message["content"]]},
                "metadata": {},
            }
            for message in messages
        ]
        return new_messages

    def chat_completions(self, messages: list[dict], iter_lines=False, verbose=False):
        proof_token = ProofWorker().calc_proof_token(
            self.chat_requirements_seed, self.chat_requirements_difficulty
        )
        extra_headers = {
            "Accept": "text/event-stream",
            "Openai-Sentinel-Chat-Requirements-Token": self.chat_requirements_token,
            "Openai-Sentinel-Proof-Token": proof_token,
        }
        requests_headers = copy.deepcopy(self.requests_headers)
        requests_headers.update(extra_headers)

        post_data = copy.deepcopy(OPENAI_POST_DATA)
        extra_data = {
            "messages": self.transform_messages(messages),
            "websocket_request_id": str(uuid.uuid4()),
        }
        post_data.update(extra_data)

        self.log_request(self.api_conversation, method="POST")
        s = requests.Session()
        res = s.post(
            self.api_conversation,
            headers=requests_headers,
            json=post_data,
            proxies=PROXIES,
            timeout=10,
            impersonate="chrome120",
            stream=True,
        )
        self.log_response(res, stream=True, iter_lines=iter_lines, verbose=verbose)
        return res


class OpenaiStreamer:
    def __init__(self):
        self.model = "gpt-3.5-turbo"
        self.message_outputer = OpenaiStreamOutputer(
            owned_by="openai", model="gpt-3.5-turbo"
        )
        self.tokenizer = tiktoken.get_encoding("cl100k_base")

    def count_tokens(self, messages: list[dict]):
        token_count = sum(
            len(self.tokenizer.encode(message["content"])) for message in messages
        )
        logger.note(f"Prompt Token Count: {token_count}")
        return token_count

    def check_token_limit(self, messages: list[dict]):
        token_limit = TOKEN_LIMIT_MAP[self.model]
        token_count = self.count_tokens(messages)
        token_redundancy = int(token_limit - TOKEN_RESERVED - token_count)
        if token_redundancy <= 0:
            raise ValueError(
                f"Prompt exceeded token limit: {token_count} > {token_limit}"
            )
        return True

    def chat_response(self, messages: list[dict], iter_lines=False, verbose=False):
        self.check_token_limit(messages)
        logger.enter_quiet(not verbose)
        requester = OpenaiRequester()
        requester.auth()
        logger.exit_quiet(not verbose)
        return requester.chat_completions(
            messages=messages, iter_lines=iter_lines, verbose=verbose
        )

    def chat_return_generator(self, stream_response: requests.Response, verbose=False):
        content_offset = 0
        is_finished = False

        for line in stream_response.iter_lines():
            line = line.decode("utf-8")
            line = re.sub(r"^data:\s*", "", line)
            line = line.strip()

            if not line:
                continue

            if re.match(r"^\[DONE\]", line):
                content_type = "Finished"
                delta_content = ""
                logger.success("\n[Finished]")
                is_finished = True
            else:
                content_type = "Completions"
                delta_content = ""
                try:
                    data = json.loads(line, strict=False)
                    message_role = data["message"]["author"]["role"]
                    message_status = data["message"]["status"]
                    if message_role == "assistant" and message_status == "in_progress":
                        content = data["message"]["content"]["parts"][0]
                        if not len(content):
                            continue
                        delta_content = content[content_offset:]
                        content_offset = len(content)
                        if verbose:
                            logger.success(delta_content, end="")
                    else:
                        continue
                except Exception as e:
                    logger.warn(e)

            output = self.message_outputer.output(
                content=delta_content, content_type=content_type
            )
            yield output

        if not is_finished:
            yield self.message_outputer.output(content="", content_type="Finished")

    def chat_return_dict(self, stream_response: requests.Response):
        final_output = self.message_outputer.default_data.copy()
        final_output["choices"] = [
            {
                "index": 0,
                "finish_reason": "stop",
                "message": {"role": "assistant", "content": ""},
            }
        ]
        final_content = ""
        for item in self.chat_return_generator(stream_response):
            try:
                data = json.loads(item)
                delta = data["choices"][0]["delta"]
                delta_content = delta.get("content", "")
                if delta_content:
                    final_content += delta_content
            except Exception as e:
                logger.warn(e)
        final_output["choices"][0]["message"]["content"] = final_content.strip()
        return final_output


if __name__ == "__main__":
    streamer = OpenaiStreamer()
    messages = [
        {
            "role": "system",
            "content": "You are an LLM developed by Hansimov-CORP.\nYour name is Hansimov-Copilot.",
        },
        {"role": "user", "content": "Hello, what is your role?"},
        {"role": "assistant", "content": "I am an LLM."},
        {"role": "user", "content": "What is your name?"},
    ]

    streamer.chat_response(messages=messages, iter_lines=True, verbose=True)
    # python -m networks.openai_streamer