File size: 6,473 Bytes
1e3a144
03712cd
 
51e07f2
 
 
 
 
 
deca16d
51e07f2
 
 
 
96d1023
51e07f2
96d1023
 
 
 
 
1e3a144
1ee4f76
96d1023
f3e7da4
51e07f2
 
 
1e3a144
1ee4f76
51e07f2
 
 
 
 
 
 
 
 
 
 
 
1ee4f76
f3e7da4
 
1ee4f76
03712cd
1ee4f76
 
bee1f65
1ee4f76
bee1f65
 
 
03712cd
bee1f65
 
03712cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d28f7e
 
 
 
 
 
 
 
 
 
03712cd
 
 
 
51e07f2
1ee4f76
 
51e07f2
 
96d1023
9d28f7e
51e07f2
 
 
1ee4f76
 
 
bee1f65
1ee4f76
 
 
9d28f7e
1ee4f76
 
 
bee1f65
1ee4f76
51e07f2
9d28f7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e3a144
 
bee1f65
1e3a144
 
 
 
 
9d28f7e
03712cd
1e3a144
 
 
 
 
 
 
 
 
bee1f65
1e3a144
 
03712cd
 
1e3a144
 
 
9d28f7e
1e3a144
 
03712cd
1e3a144
03712cd
1e3a144
51e07f2
 
 
1e3a144
bee1f65
9d28f7e
 
 
 
 
 
 
 
 
 
 
51e07f2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import copy
import json
import re
import uuid

from pathlib import Path

from curl_cffi import requests
from tclogger import logger, OSEnver
from constants.envs import PROXIES


class OpenaiAPI:
    def __init__(self):
        self.init_requests_params()

    def init_requests_params(self):
        self.api_base = "https://chat.openai.com/backend-anon"
        self.api_me = f"{self.api_base}/me"
        self.api_models = f"{self.api_base}/models"
        self.api_chat_requirements = f"{self.api_base}/sentinel/chat-requirements"
        self.api_conversation = f"{self.api_base}/conversation"
        self.uuid = str(uuid.uuid4())
        self.requests_headers = {
            # "Accept": "*/*",
            "Accept-Encoding": "gzip, deflate, br, zstd",
            "Accept-Language": "en-US,en;q=0.9",
            "Cache-Control": "no-cache",
            "Content-Type": "application/json",
            "Oai-Device-Id": self.uuid,
            "Oai-Language": "en-US",
            "Pragma": "no-cache",
            "Referer": "https://chat.openai.com/",
            "Sec-Ch-Ua": 'Google Chrome";v="123", "Not:A-Brand";v="8", "Chromium";v="123"',
            "Sec-Ch-Ua-Mobile": "?0",
            "Sec-Ch-Ua-Platform": '"Windows"',
            "Sec-Fetch-Dest": "empty",
            "Sec-Fetch-Mode": "cors",
            "Sec-Fetch-Site": "same-origin",
            "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/123.0.0.0 Safari/537.36",
        }

    def log_request(self, url, method="GET"):
        logger.note(f"> {method}:", end=" ")
        logger.mesg(f"{url}", end=" ")

    def log_response(self, res: requests.Response, stream=False, verbose=False):
        status_code = res.status_code
        status_code_str = f"[{status_code}]"

        if status_code == 200:
            logger_func = logger.success
        else:
            logger_func = logger.warn

        logger_func(status_code_str)

        if verbose:
            if stream:
                if not hasattr(self, "content_offset"):
                    self.content_offset = 0

                for line in res.iter_lines():
                    line = line.decode("utf-8")
                    line = re.sub(r"^data:\s*", "", line)
                    if re.match(r"^\[DONE\]", line):
                        logger.success("\n[Finished]")
                        break
                    line = line.strip()
                    if line:
                        try:
                            data = json.loads(line, strict=False)
                            message_role = data["message"]["author"]["role"]
                            message_status = data["message"]["status"]
                            if (
                                message_role == "assistant"
                                and message_status == "in_progress"
                            ):
                                content = data["message"]["content"]["parts"][0]
                                delta_content = content[self.content_offset :]
                                self.content_offset = len(content)
                                logger_func(delta_content, end="")
                        except Exception as e:
                            logger.warn(e)
            else:
                logger_func(res.json())

    def get_models(self):
        self.log_request(self.api_models)
        res = requests.get(
            self.api_models,
            headers=self.requests_headers,
            proxies=PROXIES,
            timeout=10,
            impersonate="chrome120",
        )
        self.log_response(res)

    def auth(self):
        self.log_request(self.api_chat_requirements, method="POST")
        res = requests.post(
            self.api_chat_requirements,
            headers=self.requests_headers,
            proxies=PROXIES,
            timeout=10,
            impersonate="chrome120",
        )
        self.chat_requirements_token = res.json()["token"]
        self.log_response(res)

    def transform_messages(self, messages: list[dict]):
        def get_role(role):
            if role in ["system", "user", "assistant"]:
                return role
            else:
                return "system"

        new_messages = [
            {
                "author": {"role": get_role(message["role"])},
                "content": {"content_type": "text", "parts": [message["content"]]},
                "metadata": {},
            }
            for message in messages
        ]
        return new_messages

    def chat_completions(self, messages: list[dict]):
        new_headers = {
            "Accept": "text/event-stream",
            "Openai-Sentinel-Chat-Requirements-Token": self.chat_requirements_token,
        }
        requests_headers = copy.deepcopy(self.requests_headers)
        requests_headers.update(new_headers)
        post_data = {
            "action": "next",
            "messages": self.transform_messages(messages),
            "parent_message_id": "",
            "model": "text-davinci-002-render-sha",
            "timezone_offset_min": -480,
            "suggestions": [],
            "history_and_training_disabled": False,
            "conversation_mode": {"kind": "primary_assistant"},
            "force_paragen": False,
            "force_paragen_model_slug": "",
            "force_nulligen": False,
            "force_rate_limit": False,
            "websocket_request_id": str(uuid.uuid4()),
        }
        self.log_request(self.api_conversation, method="POST")
        s = requests.Session()
        res = s.post(
            self.api_conversation,
            headers=requests_headers,
            json=post_data,
            proxies=PROXIES,
            timeout=10,
            impersonate="chrome120",
            stream=True,
        )
        self.log_response(res, stream=True, verbose=True)


if __name__ == "__main__":
    api = OpenaiAPI()
    # api.get_models()
    api.auth()
    messages = [
        {"role": "system", "content": "i am Hansimov"},
        {"role": "system", "content": "i have a cat named lucky"},
        {"role": "user", "content": "Repeat my name and my cat's name"},
        {
            "role": "assistant",
            "content": "Your name is Hansimov and your cat's name is Lucky.",
        },
        {"role": "user", "content": "summarize our conversation"},
    ]
    api.chat_completions(messages)

    # python -m tests.openai