File size: 6,459 Bytes
138c09e
 
 
 
 
 
 
 
 
 
 
 
f234ce3
138c09e
f234ce3
138c09e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f234ce3
4d3e890
 
 
9fb4731
 
 
 
 
 
 
 
138c09e
 
 
 
 
876e441
4d3e890
 
138c09e
9fb4731
 
 
 
138c09e
 
 
 
 
f234ce3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb0ce75
 
f234ce3
8c0b736
f234ce3
 
 
 
 
 
 
eb0ce75
 
 
 
 
 
 
 
 
 
 
f234ce3
eb0ce75
f234ce3
 
 
 
eb0ce75
f234ce3
 
 
 
138c09e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import argparse
import os
import sys
import uvicorn

from fastapi import FastAPI, Depends
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from pydantic import BaseModel, Field
from typing import Union
from sse_starlette.sse import EventSourceResponse, ServerSentEvent
from utils.logger import logger
from networks.google_searcher import GoogleSearcher
from networks.webpage_fetcher import BatchWebpageFetcher
from documents.query_results_extractor import QueryResultsExtractor
from documents.webpage_content_extractor import BatchWebpageContentExtractor
from utils.logger import logger


class SearchAPIApp:
    def __init__(self):
        self.app = FastAPI(
            docs_url="/",
            title="Web Search API",
            swagger_ui_parameters={"defaultModelsExpandDepth": -1},
            version="1.0",
        )
        self.setup_routes()

    class QueriesToSearchResultsPostItem(BaseModel):
        queries: list = Field(
            default=[""],
            description="(list[str]) Queries to search",
        )
        result_num: int = Field(
            default=10,
            description="(int) Number of search results",
        )
        safe: bool = Field(
            default=False,
            description="(bool) Enable SafeSearch",
        )
        types: list = Field(
            default=["web"],
            description="(list[str]) Types of search results: `web`, `image`, `videos`, `news`",
        )
        extract_webpage: bool = Field(
            default=False,
            description="(bool) Enable extracting main text contents from webpage, will add `text` filed in each `query_result` dict",
        )
        overwrite_query_html: bool = Field(
            default=False,
            description="(bool) Overwrite HTML file of query results",
        )
        overwrite_webpage_html: bool = Field(
            default=False,
            description="(bool) Overwrite HTML files of webpages from query results",
        )

    def queries_to_search_results(self, item: QueriesToSearchResultsPostItem):
        google_searcher = GoogleSearcher()
        queries_search_results = []
        for query in item.queries:
            query_results_extractor = QueryResultsExtractor()
            if not query.strip():
                continue
            query_html_path = google_searcher.search(
                query=query,
                result_num=item.result_num,
                safe=item.safe,
                overwrite=item.overwrite_query_html,
            )
            query_search_results = query_results_extractor.extract(query_html_path)
            queries_search_results.append(query_search_results)
        logger.note(queries_search_results)

        if item.extract_webpage:
            queries_search_results = self.extract_webpages(
                queries_search_results,
                overwrite_webpage_html=item.overwrite_webpage_html,
            )
        return queries_search_results

    def extract_webpages(self, queries_search_results, overwrite_webpage_html=False):
        for query_idx, query_search_results in enumerate(queries_search_results):
            # Fetch webpages with urls
            batch_webpage_fetcher = BatchWebpageFetcher()
            urls = [
                query_result["url"]
                for query_result in query_search_results["query_results"]
            ]
            url_and_html_path_list = batch_webpage_fetcher.fetch(
                urls,
                overwrite=overwrite_webpage_html,
                output_parent=query_search_results["query"],
            )

            # Extract webpage contents from htmls
            html_paths = [
                str(url_and_html_path["html_path"])
                for url_and_html_path in url_and_html_path_list
            ]
            batch_webpage_content_extractor = BatchWebpageContentExtractor()
            html_path_and_extracted_content_list = (
                batch_webpage_content_extractor.extract(html_paths)
            )

            # Build the map of url to extracted_content
            html_path_to_url_dict = {
                str(url_and_html_path["html_path"]): url_and_html_path["url"]
                for url_and_html_path in url_and_html_path_list
            }
            url_to_extracted_content_dict = {
                html_path_to_url_dict[
                    html_path_and_extracted_content["html_path"]
                ]: html_path_and_extracted_content["extracted_content"]
                for html_path_and_extracted_content in html_path_and_extracted_content_list
            }

            # Write extracted contents (as 'text' field) to query_search_results
            for query_result_idx, query_result in enumerate(
                query_search_results["query_results"]
            ):
                url = query_result["url"]
                extracted_content = url_to_extracted_content_dict[url]
                queries_search_results[query_idx]["query_results"][query_result_idx][
                    "text"
                ] = extracted_content

        return queries_search_results

    def setup_routes(self):
        self.app.post(
            "/queries_to_search_results",
            summary="Search queries, and extract contents from results",
        )(self.queries_to_search_results)


class ArgParser(argparse.ArgumentParser):
    def __init__(self, *args, **kwargs):
        super(ArgParser, self).__init__(*args, **kwargs)

        self.add_argument(
            "-s",
            "--server",
            type=str,
            default="0.0.0.0",
            help="Server IP for Web Search API",
        )
        self.add_argument(
            "-p",
            "--port",
            type=int,
            default=21111,
            help="Server Port for Web Search API",
        )

        self.add_argument(
            "-d",
            "--dev",
            default=False,
            action="store_true",
            help="Run in dev mode",
        )

        self.args = self.parse_args(sys.argv[1:])


app = SearchAPIApp().app

if __name__ == "__main__":
    args = ArgParser().args
    if args.dev:
        uvicorn.run("__main__:app", host=args.server, port=args.port, reload=True)
    else:
        uvicorn.run("__main__:app", host=args.server, port=args.port, reload=False)

    # python -m apis.search_api      # [Docker] in product mode
    # python -m apis.search_api -d   # [Dev]    in develop mode