HarryLee commited on
Commit
ff775c5
1 Parent(s): e386835

Add criterions folder

Browse files
criterions/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .scst_loss import ScstRewardCriterion
2
+ from .label_smoothed_cross_entropy import AjustLabelSmoothedCrossEntropyCriterion
criterions/label_smoothed_cross_entropy.py ADDED
@@ -0,0 +1,343 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ #
3
+ # This source code is licensed under the MIT license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ import math
7
+ from dataclasses import dataclass, field
8
+ from typing import Optional
9
+
10
+ import torch
11
+ import torch.nn.functional as F
12
+ import numpy as np
13
+ from fairseq import metrics, utils
14
+ from fairseq.criterions import FairseqCriterion, register_criterion
15
+ from fairseq.dataclass import FairseqDataclass
16
+ from omegaconf import II
17
+
18
+
19
+ @dataclass
20
+ class AjustLabelSmoothedCrossEntropyCriterionConfig(FairseqDataclass):
21
+ label_smoothing: float = field(
22
+ default=0.0,
23
+ metadata={"help": "epsilon for label smoothing, 0 means no label smoothing"},
24
+ )
25
+ report_accuracy: bool = field(
26
+ default=False,
27
+ metadata={"help": "report accuracy metric"},
28
+ )
29
+ ignore_prefix_size: int = field(
30
+ default=0,
31
+ metadata={"help": "Ignore first N tokens"},
32
+ )
33
+ ignore_eos: bool = field(
34
+ default=False,
35
+ metadata={"help": "Ignore eos token"},
36
+ )
37
+ sentence_avg: bool = II("optimization.sentence_avg")
38
+ drop_worst_ratio: float = field(
39
+ default=0.0,
40
+ metadata={"help": "ratio for discarding bad samples"},
41
+ )
42
+ drop_worst_after: int = field(
43
+ default=0,
44
+ metadata={"help": "steps for discarding bad samples"},
45
+ )
46
+ use_rdrop: bool = field(
47
+ default=False, metadata={"help": "use R-Drop"}
48
+ )
49
+ reg_alpha: float = field(
50
+ default=1.0, metadata={"help": "weight for R-Drop"}
51
+ )
52
+ sample_patch_num: int = field(
53
+ default=196, metadata={"help": "sample patchs for v1"}
54
+ )
55
+ constraint_range: Optional[str] = field(
56
+ default=None,
57
+ metadata={"help": "constraint range"}
58
+ )
59
+
60
+
61
+ def construct_rdrop_sample(x):
62
+ if isinstance(x, dict):
63
+ for key in x:
64
+ x[key] = construct_rdrop_sample(x[key])
65
+ return x
66
+ elif isinstance(x, torch.Tensor):
67
+ return x.repeat(2, *([1] * (x.dim()-1)))
68
+ elif isinstance(x, int):
69
+ return x * 2
70
+ elif isinstance(x, np.ndarray):
71
+ return x.repeat(2)
72
+ else:
73
+ raise NotImplementedError
74
+
75
+
76
+ def kl_loss(p, q):
77
+ p_loss = F.kl_div(p, torch.exp(q), reduction='sum')
78
+ q_loss = F.kl_div(q, torch.exp(p), reduction='sum')
79
+ loss = (p_loss + q_loss) / 2
80
+ return loss
81
+
82
+
83
+ def label_smoothed_nll_loss(
84
+ lprobs, target, epsilon, update_num, reduce=True,
85
+ drop_worst_ratio=0.0, drop_worst_after=0, use_rdrop=False, reg_alpha=1.0,
86
+ constraint_masks=None, constraint_start=None, constraint_end=None
87
+ ):
88
+ if target.dim() == lprobs.dim() - 1:
89
+ target = target.unsqueeze(-1)
90
+ nll_loss = -lprobs.gather(dim=-1, index=target).squeeze(-1)
91
+ if constraint_masks is not None:
92
+ smooth_loss = -lprobs.masked_fill(~constraint_masks, 0).sum(dim=-1, keepdim=True).squeeze(-1)
93
+ eps_i = epsilon / (constraint_masks.sum(1) - 1 + 1e-6)
94
+ elif constraint_start is not None and constraint_end is not None:
95
+ constraint_range = [0, 1, 2, 3] + list(range(constraint_start, constraint_end))
96
+ smooth_loss = -lprobs[:, constraint_range].sum(dim=-1, keepdim=True).squeeze(-1)
97
+ eps_i = epsilon / (len(constraint_range) - 1 + 1e-6)
98
+ else:
99
+ smooth_loss = -lprobs.sum(dim=-1, keepdim=True).squeeze(-1)
100
+ eps_i = epsilon / (lprobs.size(-1) - 1)
101
+ loss = (1.0 - epsilon - eps_i) * nll_loss + eps_i * smooth_loss
102
+ if drop_worst_ratio > 0 and update_num > drop_worst_after:
103
+ if use_rdrop:
104
+ true_batch_size = loss.size(0) // 2
105
+ _, indices = torch.topk(loss[:true_batch_size], k=int(true_batch_size * (1 - drop_worst_ratio)), largest=False)
106
+ loss = torch.cat([loss[indices], loss[indices+true_batch_size]])
107
+ nll_loss = torch.cat([nll_loss[indices], nll_loss[indices+true_batch_size]])
108
+ lprobs = torch.cat([lprobs[indices], lprobs[indices+true_batch_size]])
109
+ else:
110
+ loss, indices = torch.topk(loss, k=int(loss.shape[0] * (1 - drop_worst_ratio)), largest=False)
111
+ nll_loss = nll_loss[indices]
112
+ lprobs = lprobs[indices]
113
+
114
+ ntokens = loss.numel()
115
+ nll_loss = nll_loss.sum()
116
+ loss = loss.sum()
117
+ if use_rdrop:
118
+ true_batch_size = lprobs.size(0) // 2
119
+ p = lprobs[:true_batch_size]
120
+ q = lprobs[true_batch_size:]
121
+ if constraint_start is not None and constraint_end is not None:
122
+ constraint_range = [0, 1, 2, 3] + list(range(constraint_start, constraint_end))
123
+ p = p[:, constraint_range]
124
+ q = q[:, constraint_range]
125
+ loss += kl_loss(p, q) * reg_alpha
126
+
127
+ return loss, nll_loss, ntokens
128
+
129
+
130
+ @register_criterion(
131
+ "ajust_label_smoothed_cross_entropy", dataclass=AjustLabelSmoothedCrossEntropyCriterionConfig
132
+ )
133
+ class AjustLabelSmoothedCrossEntropyCriterion(FairseqCriterion):
134
+ def __init__(
135
+ self,
136
+ task,
137
+ sentence_avg,
138
+ label_smoothing,
139
+ ignore_prefix_size=0,
140
+ ignore_eos=False,
141
+ report_accuracy=False,
142
+ drop_worst_ratio=0,
143
+ drop_worst_after=0,
144
+ use_rdrop=False,
145
+ reg_alpha=1.0,
146
+ sample_patch_num=196,
147
+ constraint_range=None
148
+ ):
149
+ super().__init__(task)
150
+ self.sentence_avg = sentence_avg
151
+ self.eps = label_smoothing
152
+ self.ignore_prefix_size = ignore_prefix_size
153
+ self.ignore_eos = ignore_eos
154
+ self.report_accuracy = report_accuracy
155
+ self.drop_worst_ratio = drop_worst_ratio
156
+ self.drop_worst_after = drop_worst_after
157
+ self.use_rdrop = use_rdrop
158
+ self.reg_alpha = reg_alpha
159
+ self.sample_patch_num = sample_patch_num
160
+
161
+ self.constraint_start = None
162
+ self.constraint_end = None
163
+ if constraint_range is not None:
164
+ constraint_start, constraint_end = constraint_range.split(',')
165
+ self.constraint_start = int(constraint_start)
166
+ self.constraint_end = int(constraint_end)
167
+
168
+ def forward(self, model, sample, update_num=0, reduce=True):
169
+ """Compute the loss for the given sample.
170
+
171
+ Returns a tuple with three elements:
172
+ 1) the loss
173
+ 2) the sample size, which is used as the denominator for the gradient
174
+ 3) logging outputs to display while training
175
+ """
176
+ if isinstance(sample, list):
177
+ if self.sample_patch_num > 0:
178
+ sample[0]['net_input']['sample_patch_num'] = self.sample_patch_num
179
+ loss_v1, sample_size_v1, logging_output_v1 = self.forward(model, sample[0], update_num, reduce)
180
+ loss_v2, sample_size_v2, logging_output_v2 = self.forward(model, sample[1], update_num, reduce)
181
+ loss = loss_v1 / sample_size_v1 + loss_v2 / sample_size_v2
182
+ sample_size = 1
183
+ logging_output = {
184
+ "loss": loss.data,
185
+ "loss_v1": loss_v1.data,
186
+ "loss_v2": loss_v2.data,
187
+ "nll_loss": logging_output_v1["nll_loss"].data / sample_size_v1 + logging_output_v2["nll_loss"].data / sample_size_v2,
188
+ "ntokens": logging_output_v1["ntokens"] + logging_output_v2["ntokens"],
189
+ "nsentences": logging_output_v1["nsentences"] + logging_output_v2["nsentences"],
190
+ "sample_size": 1,
191
+ "sample_size_v1": sample_size_v1,
192
+ "sample_size_v2": sample_size_v2,
193
+ }
194
+ return loss, sample_size, logging_output
195
+
196
+ if self.use_rdrop:
197
+ construct_rdrop_sample(sample)
198
+
199
+ net_output = model(**sample["net_input"])
200
+ loss, nll_loss, ntokens = self.compute_loss(model, net_output, sample, update_num, reduce=reduce)
201
+ sample_size = (
202
+ sample["target"].size(0) if self.sentence_avg else ntokens
203
+ )
204
+ logging_output = {
205
+ "loss": loss.data,
206
+ "nll_loss": nll_loss.data,
207
+ "ntokens": sample["ntokens"],
208
+ "nsentences": sample["nsentences"],
209
+ "sample_size": sample_size,
210
+ }
211
+ if self.report_accuracy:
212
+ n_correct, total = self.compute_accuracy(model, net_output, sample)
213
+ logging_output["n_correct"] = utils.item(n_correct.data)
214
+ logging_output["total"] = utils.item(total.data)
215
+ return loss, sample_size, logging_output
216
+
217
+ def get_lprobs_and_target(self, model, net_output, sample):
218
+ conf = sample['conf'][:, None, None] if 'conf' in sample and sample['conf'] is not None else 1
219
+ constraint_masks = None
220
+ if "constraint_masks" in sample and sample["constraint_masks"] is not None:
221
+ constraint_masks = sample["constraint_masks"]
222
+ net_output[0].masked_fill_(~constraint_masks, -math.inf)
223
+ if self.constraint_start is not None and self.constraint_end is not None:
224
+ net_output[0][:, :, 4:self.constraint_start] = -math.inf
225
+ net_output[0][:, :, self.constraint_end:] = -math.inf
226
+ lprobs = model.get_normalized_probs(net_output, log_probs=True) * conf
227
+ target = model.get_targets(sample, net_output)
228
+ if self.ignore_prefix_size > 0:
229
+ lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous()
230
+ target = target[:, self.ignore_prefix_size :].contiguous()
231
+ if constraint_masks is not None:
232
+ constraint_masks = constraint_masks[:, self.ignore_prefix_size :, :].contiguous()
233
+ if self.ignore_eos:
234
+ bsz, seq_len, embed_dim = lprobs.size()
235
+ eos_indices = target.eq(self.task.tgt_dict.eos())
236
+ lprobs = lprobs[~eos_indices].reshape(bsz, seq_len-1, embed_dim)
237
+ target = target[~eos_indices].reshape(bsz, seq_len-1)
238
+ if constraint_masks is not None:
239
+ constraint_masks = constraint_masks[~eos_indices].reshape(bsz, seq_len-1, embed_dim)
240
+ if constraint_masks is not None:
241
+ constraint_masks = constraint_masks.view(-1, constraint_masks.size(-1))
242
+ return lprobs.view(-1, lprobs.size(-1)), target.view(-1), constraint_masks
243
+
244
+ def compute_loss(self, model, net_output, sample, update_num, reduce=True):
245
+ lprobs, target, constraint_masks = self.get_lprobs_and_target(model, net_output, sample)
246
+ if constraint_masks is not None:
247
+ constraint_masks = constraint_masks[target != self.padding_idx]
248
+ lprobs = lprobs[target != self.padding_idx]
249
+ target = target[target != self.padding_idx]
250
+ loss, nll_loss, ntokens = label_smoothed_nll_loss(
251
+ lprobs,
252
+ target,
253
+ self.eps,
254
+ update_num,
255
+ reduce=reduce,
256
+ drop_worst_ratio=self.drop_worst_ratio,
257
+ drop_worst_after=self.drop_worst_after,
258
+ use_rdrop=self.use_rdrop,
259
+ reg_alpha=self.reg_alpha,
260
+ constraint_masks=constraint_masks,
261
+ constraint_start=self.constraint_start,
262
+ constraint_end=self.constraint_end
263
+ )
264
+ return loss, nll_loss, ntokens
265
+
266
+ def compute_accuracy(self, model, net_output, sample):
267
+ lprobs, target = self.get_lprobs_and_target(model, net_output, sample)
268
+ mask = target.ne(self.padding_idx)
269
+ n_correct = torch.sum(
270
+ lprobs.argmax(1).masked_select(mask).eq(target.masked_select(mask))
271
+ )
272
+ total = torch.sum(mask)
273
+ return n_correct, total
274
+
275
+ @classmethod
276
+ def reduce_metrics(cls, logging_outputs) -> None:
277
+ """Aggregate logging outputs from data parallel training."""
278
+ loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
279
+ loss_sum_v1 = sum(log.get("loss_v1", 0) for log in logging_outputs)
280
+ loss_sum_v2 = sum(log.get("loss_v2", 0) for log in logging_outputs)
281
+ nll_loss_sum = sum(log.get("nll_loss", 0) for log in logging_outputs)
282
+ ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
283
+ nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
284
+ sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
285
+ sample_size_v1 = sum(log.get("sample_size_v1", 0) for log in logging_outputs)
286
+ sample_size_v2 = sum(log.get("sample_size_v2", 0) for log in logging_outputs)
287
+
288
+ metrics.log_scalar(
289
+ "loss", loss_sum / sample_size, sample_size, round=3
290
+ )
291
+ metrics.log_scalar(
292
+ "loss_v1", loss_sum_v1 / max(sample_size_v1, 1), max(sample_size_v1, 1), round=3
293
+ )
294
+ metrics.log_scalar(
295
+ "loss_v2", loss_sum_v2 / max(sample_size_v2, 1), max(sample_size_v2, 1), round=3
296
+ )
297
+ metrics.log_scalar(
298
+ "nll_loss", nll_loss_sum / sample_size, ntokens, round=3
299
+ )
300
+ metrics.log_derived(
301
+ "ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg)
302
+ )
303
+
304
+ metrics.log_scalar(
305
+ "ntokens", ntokens, 1, round=3
306
+ )
307
+ metrics.log_scalar(
308
+ "nsentences", nsentences, 1, round=3
309
+ )
310
+ metrics.log_scalar(
311
+ "sample_size", sample_size, 1, round=3
312
+ )
313
+ metrics.log_scalar(
314
+ "sample_size_v1", sample_size_v1, 1, round=3
315
+ )
316
+ metrics.log_scalar(
317
+ "sample_size_v2", sample_size_v2, 1, round=3
318
+ )
319
+
320
+ total = utils.item(sum(log.get("total", 0) for log in logging_outputs))
321
+ if total > 0:
322
+ metrics.log_scalar("total", total)
323
+ n_correct = utils.item(
324
+ sum(log.get("n_correct", 0) for log in logging_outputs)
325
+ )
326
+ metrics.log_scalar("n_correct", n_correct)
327
+ metrics.log_derived(
328
+ "accuracy",
329
+ lambda meters: round(
330
+ meters["n_correct"].sum * 100.0 / meters["total"].sum, 3
331
+ )
332
+ if meters["total"].sum > 0
333
+ else float("nan"),
334
+ )
335
+
336
+ @staticmethod
337
+ def logging_outputs_can_be_summed() -> bool:
338
+ """
339
+ Whether the logging outputs returned by `forward` can be summed
340
+ across workers prior to calling `reduce_metrics`. Setting this
341
+ to True will improves distributed training speed.
342
+ """
343
+ return True
criterions/scst_loss.py ADDED
@@ -0,0 +1,280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ #
3
+ # This source code is licensed under the MIT license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ import math
7
+ import string
8
+ from dataclasses import dataclass, field
9
+ from collections import OrderedDict
10
+ from typing import Optional
11
+
12
+ import torch
13
+ from fairseq import metrics, utils
14
+ from fairseq.criterions import FairseqCriterion, register_criterion
15
+ from fairseq.dataclass import FairseqDataclass
16
+ from omegaconf import II
17
+
18
+ from data import data_utils
19
+ from utils.cider.pyciderevalcap.ciderD.ciderD import CiderD
20
+
21
+
22
+ def scst_loss(lprobs, target, reward, ignore_index=None, reduce=True):
23
+ loss = -lprobs.gather(dim=-1, index=target.unsqueeze(-1)).squeeze() * reward.unsqueeze(-1)
24
+ if ignore_index is not None:
25
+ pad_mask = target.eq(ignore_index)
26
+ loss.masked_fill_(pad_mask, 0.0)
27
+ ntokens = (~pad_mask).sum()
28
+ else:
29
+ loss = loss.squeeze(-1)
30
+ ntokens = target.numel()
31
+ if reduce:
32
+ loss = loss.sum()
33
+ return loss, ntokens
34
+
35
+ @dataclass
36
+ class ScstRewardCriterionConfig(FairseqDataclass):
37
+ scst_cider_cached_tokens: str = field(
38
+ default="coco-train-words.p",
39
+ metadata={"help": "path to cached cPickle file used to calculate CIDEr scores"},
40
+ )
41
+ ignore_prefix_size: int = field(
42
+ default=0,
43
+ metadata={"help": "Ignore first N tokens"},
44
+ )
45
+ sentence_avg: bool = II("optimization.sentence_avg")
46
+ constraint_range: Optional[str] = field(
47
+ default=None,
48
+ metadata={"help": "constraint range"}
49
+ )
50
+
51
+
52
+ @register_criterion(
53
+ "scst_reward_criterion", dataclass=ScstRewardCriterionConfig
54
+ )
55
+ class ScstRewardCriterion(FairseqCriterion):
56
+ CIDER_REWARD_WEIGHT = 1
57
+
58
+ def __init__(
59
+ self,
60
+ task,
61
+ scst_cider_cached_tokens,
62
+ sentence_avg,
63
+ ignore_prefix_size=0,
64
+ constraint_range=None
65
+ ):
66
+ super().__init__(task)
67
+ self.scst_cider_scorer = CiderD(df=scst_cider_cached_tokens)
68
+ self.sentence_avg = sentence_avg
69
+ self.ignore_prefix_size = ignore_prefix_size
70
+ self.transtab = str.maketrans({key: None for key in string.punctuation})
71
+
72
+ self.constraint_start = None
73
+ self.constraint_end = None
74
+ if constraint_range is not None:
75
+ constraint_start, constraint_end = constraint_range.split(',')
76
+ self.constraint_start = int(constraint_start)
77
+ self.constraint_end = int(constraint_end)
78
+
79
+ def forward(self, model, sample, reduce=True):
80
+ """Compute the loss for the given sample.
81
+
82
+ Returns a tuple with three elements:
83
+ 1) the loss
84
+ 2) the sample size, which is used as the denominator for the gradient
85
+ 3) logging outputs to display while training
86
+ """
87
+ loss, score, ntokens, nsentences = self.compute_loss(model, sample, reduce=reduce)
88
+
89
+ sample_size = (
90
+ nsentences if self.sentence_avg else ntokens
91
+ )
92
+ logging_output = {
93
+ "loss": loss.data,
94
+ "score": score,
95
+ "ntokens": ntokens,
96
+ "nsentences": nsentences,
97
+ "sample_size": sample_size,
98
+ }
99
+ return loss, sample_size, logging_output
100
+
101
+ def _calculate_eval_scores(self, gen_res, gt_idx, gt_res):
102
+ '''
103
+ gen_res: generated captions, list of str
104
+ gt_idx: list of int, of the same length as gen_res
105
+ gt_res: ground truth captions, list of list of str.
106
+ gen_res[i] corresponds to gt_res[gt_idx[i]]
107
+ Each image can have multiple ground truth captions
108
+ '''
109
+ gen_res_size = len(gen_res)
110
+
111
+ res = OrderedDict()
112
+ for i in range(gen_res_size):
113
+ res[i] = [self._wrap_sentence(gen_res[i].strip().translate(self.transtab))]
114
+
115
+ gts = OrderedDict()
116
+ gt_res_ = [
117
+ [self._wrap_sentence(gt_res[i][j].strip().translate(self.transtab)) for j in range(len(gt_res[i]))]
118
+ for i in range(len(gt_res))
119
+ ]
120
+ for i in range(gen_res_size):
121
+ gts[i] = gt_res_[gt_idx[i]]
122
+
123
+ res_ = [{'image_id':i, 'caption': res[i]} for i in range(len(res))]
124
+ _, batch_cider_scores = self.scst_cider_scorer.compute_score(gts, res_)
125
+ scores = self.CIDER_REWARD_WEIGHT * batch_cider_scores
126
+ return scores
127
+
128
+ @classmethod
129
+ def _wrap_sentence(self, s):
130
+ # ensure the sentence ends with <eos> token
131
+ # in order to keep consisitent with cider_cached_tokens
132
+ r = s.strip()
133
+ if r.endswith('.'):
134
+ r = r[:-1]
135
+ r += ' <eos>'
136
+ return r
137
+
138
+ def get_generator_out(self, model, sample):
139
+ def decode(toks):
140
+ hypo = toks.int().cpu()
141
+ hypo_str = self.task.tgt_dict.string(hypo)
142
+ hypo_str = self.task.bpe.decode(hypo_str).strip()
143
+ return hypo, hypo_str
144
+
145
+ model.eval()
146
+ with torch.no_grad():
147
+ self.task.scst_generator.model.eval()
148
+ gen_out = self.task.scst_generator.generate([model], sample)
149
+
150
+ gen_target = []
151
+ gen_res = []
152
+ gt_res = []
153
+ for i in range(len(gen_out)):
154
+ for j in range(len(gen_out[i])):
155
+ hypo, hypo_str = decode(gen_out[i][j]["tokens"])
156
+ gen_target.append(hypo)
157
+ gen_res.append(hypo_str)
158
+ gt_res.append(
159
+ decode(utils.strip_pad(sample["target"][i], self.padding_idx))[1].split('&&')
160
+ )
161
+
162
+ return gen_target, gen_res, gt_res
163
+
164
+ def get_reward_and_scores(self, gen_res, gt_res, device):
165
+ batch_size = len(gt_res)
166
+ gen_res_size = len(gen_res)
167
+ seq_per_img = gen_res_size // batch_size
168
+
169
+ gt_idx = [i // seq_per_img for i in range(gen_res_size)]
170
+ scores = self._calculate_eval_scores(gen_res, gt_idx, gt_res)
171
+ sc_ = scores.reshape(batch_size, seq_per_img)
172
+ baseline = (sc_.sum(1, keepdims=True) - sc_) / (sc_.shape[1] - 1)
173
+ # sample - baseline
174
+ reward = scores.reshape(batch_size, seq_per_img)
175
+ reward = reward - baseline
176
+ reward = reward.reshape(gen_res_size)
177
+ reward = torch.as_tensor(reward, device=device, dtype=torch.float64)
178
+
179
+ return reward, scores
180
+
181
+ def get_net_output(self, model, sample, gen_target):
182
+ def merge(sample_list, eos=self.task.tgt_dict.eos(), move_eos_to_beginning=False):
183
+ return data_utils.collate_tokens(
184
+ sample_list,
185
+ pad_idx=self.padding_idx,
186
+ eos_idx=eos,
187
+ left_pad=False,
188
+ move_eos_to_beginning=move_eos_to_beginning,
189
+ )
190
+
191
+ batch_size = len(sample["target"])
192
+ gen_target_size = len(gen_target)
193
+ seq_per_img = gen_target_size // batch_size
194
+
195
+ model.train()
196
+ sample_src_tokens = torch.repeat_interleave(
197
+ sample['net_input']['src_tokens'], seq_per_img, dim=0
198
+ )
199
+ sample_src_lengths = torch.repeat_interleave(
200
+ sample['net_input']['src_lengths'], seq_per_img, dim=0
201
+ )
202
+ sample_patch_images = torch.repeat_interleave(
203
+ sample['net_input']['patch_images'], seq_per_img, dim=0
204
+ )
205
+ sample_patch_masks = torch.repeat_interleave(
206
+ sample['net_input']['patch_masks'], seq_per_img, dim=0
207
+ )
208
+ gen_prev_output_tokens = torch.as_tensor(
209
+ merge(gen_target, eos=self.task.tgt_dict.bos(), move_eos_to_beginning=True),
210
+ device=sample["target"].device, dtype=torch.int64
211
+ )
212
+ gen_target_tokens = torch.as_tensor(
213
+ merge(gen_target), device=sample["target"].device, dtype=torch.int64
214
+ )
215
+ net_output = model(
216
+ src_tokens=sample_src_tokens, src_lengths=sample_src_lengths,
217
+ patch_images=sample_patch_images, patch_masks=sample_patch_masks,
218
+ prev_output_tokens=gen_prev_output_tokens
219
+ )
220
+
221
+ return net_output, gen_target_tokens
222
+
223
+ def get_lprobs_and_target(self, model, net_output, gen_target):
224
+ if self.constraint_start is not None and self.constraint_end is not None:
225
+ net_output[0][:, :, 4:self.constraint_start] = -math.inf
226
+ net_output[0][:, :, self.constraint_end:] = -math.inf
227
+ lprobs = model.get_normalized_probs(net_output, log_probs=True)
228
+ if self.ignore_prefix_size > 0:
229
+ if getattr(lprobs, "batch_first", False):
230
+ lprobs = lprobs[:, self.ignore_prefix_size :, :].contiguous()
231
+ gen_target = gen_target[:, self.ignore_prefix_size :].contiguous()
232
+ else:
233
+ lprobs = lprobs[self.ignore_prefix_size :, :, :].contiguous()
234
+ gen_target = gen_target[self.ignore_prefix_size :, :].contiguous()
235
+ return lprobs, gen_target
236
+
237
+ def compute_loss(self, model, sample, reduce=True):
238
+ gen_target, gen_res, gt_res = self.get_generator_out(model, sample)
239
+ reward, scores = self.get_reward_and_scores(gen_res, gt_res, device=sample["target"].device)
240
+ net_output, gen_target_tokens = self.get_net_output(model, sample, gen_target)
241
+ gen_lprobs, gen_target_tokens = self.get_lprobs_and_target(model, net_output, gen_target_tokens)
242
+ loss, ntokens = scst_loss(gen_lprobs, gen_target_tokens, reward, ignore_index=self.padding_idx, reduce=reduce)
243
+ nsentences = gen_target_tokens.size(0)
244
+
245
+ return loss, scores.sum(), ntokens, nsentences
246
+
247
+ @classmethod
248
+ def reduce_metrics(cls, logging_outputs) -> None:
249
+ """Aggregate logging outputs from data parallel training."""
250
+ loss_sum = sum(log.get("loss", 0) for log in logging_outputs)
251
+ score_sum = sum(log.get("score", 0) for log in logging_outputs)
252
+ ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
253
+ nsentences = sum(log.get("nsentences", 0) for log in logging_outputs)
254
+ sample_size = sum(log.get("sample_size", 0) for log in logging_outputs)
255
+
256
+ metrics.log_scalar(
257
+ "loss", loss_sum / sample_size, sample_size, round=3
258
+ )
259
+ metrics.log_scalar(
260
+ "score", score_sum / nsentences, nsentences, round=3
261
+ )
262
+
263
+ metrics.log_scalar(
264
+ "ntokens", ntokens, 1, round=3
265
+ )
266
+ metrics.log_scalar(
267
+ "nsentences", nsentences, 1, round=3
268
+ )
269
+ metrics.log_scalar(
270
+ "sample_size", sample_size, 1, round=3
271
+ )
272
+
273
+ @staticmethod
274
+ def logging_outputs_can_be_summed() -> bool:
275
+ """
276
+ Whether the logging outputs returned by `forward` can be summed
277
+ across workers prior to calling `reduce_metrics`. Setting this
278
+ to True will improves distributed training speed.
279
+ """
280
+ return True