Harsh23Kashyap
commited on
Commit
•
03332e8
1
Parent(s):
7b91c5c
Upload 4 files
Browse files- LSTM.ipynb +0 -0
- app.py +174 -0
- requirements.txt +240 -0
- stock_prediction.h5 +3 -0
LSTM.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import pandas_datareader as data
|
5 |
+
import plotly.express as px
|
6 |
+
import streamlit as st
|
7 |
+
import requests
|
8 |
+
from streamlit_lottie import st_lottie
|
9 |
+
from keras.models import load_model
|
10 |
+
|
11 |
+
st.set_page_config(
|
12 |
+
page_title=" Stonks Trends Prediction", #The page title, shown in the browser tab.(should be Placement Details)
|
13 |
+
initial_sidebar_state="auto", #The way sidebar should start out. Auto shows it in desktop.
|
14 |
+
page_icon=":computer:", #The page favicon. Use the computer emoji
|
15 |
+
layout="wide", #The way page content should be laid out. "wide" uses the entire screen.
|
16 |
+
menu_items={ #Configure the menu that appears on the top-right side of this app.
|
17 |
+
'About': 'https://www.linkedin.com/in/harsh-kashyap-79b87b193/', #A markdown string to show in the About dialog. Used my linkedIn id
|
18 |
+
}
|
19 |
+
)
|
20 |
+
|
21 |
+
from datetime import date
|
22 |
+
from datetime import timedelta
|
23 |
+
today = date.today()
|
24 |
+
# Yesterday date
|
25 |
+
yesterday = today - timedelta(days = 1)
|
26 |
+
start='2008-01-01'
|
27 |
+
end=yesterday;
|
28 |
+
|
29 |
+
st.title(":computer: Stock Market Predictor") #Title heading of the page
|
30 |
+
st.markdown("##")
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
st.subheader("Enter Stock Ticker")
|
35 |
+
user_input=st.text_input('','AAPL')
|
36 |
+
df=data.DataReader(user_input,'yahoo',start,end)
|
37 |
+
date=df.index
|
38 |
+
|
39 |
+
#Checks if which parameters in hsc_s which is named as branch in sidebar is checked or not and display results accordingly
|
40 |
+
def load_lottieurl(url: str):
|
41 |
+
r = requests.get(url) #Make a request to a web page, and return the status code:
|
42 |
+
if r.status_code != 200: #200 is the HTTP status code for "OK", a successful response.
|
43 |
+
return None
|
44 |
+
return r.json() #return the animated gif
|
45 |
+
|
46 |
+
left_column, right_column = st.columns(2) #Columns divided into two parts
|
47 |
+
with left_column:
|
48 |
+
dashboard1 = load_lottieurl("https://assets10.lottiefiles.com/packages/lf20_kuhijlvx.json") #get the animated gif from file
|
49 |
+
st_lottie(dashboard1, key="Dashboard1", height=400) #change the size to height 400
|
50 |
+
with right_column:
|
51 |
+
dashboard2 = load_lottieurl("https://assets10.lottiefiles.com/packages/lf20_i2eyukor.json") #get the animated gif from file
|
52 |
+
st_lottie(dashboard2, key="Dashboard2", height=400) #change the size to height 400
|
53 |
+
|
54 |
+
|
55 |
+
st.markdown("""---""")
|
56 |
+
#Describing data
|
57 |
+
st.subheader('Data from 2008 to '+str(end.year))
|
58 |
+
st.write(df.describe())
|
59 |
+
|
60 |
+
st.markdown("""---""")
|
61 |
+
#Visualisations
|
62 |
+
st.subheader("Closing Price vs Time Chart of "+str(user_input)) #Header
|
63 |
+
#plot a line graph
|
64 |
+
fig_line = px.line(
|
65 |
+
df,
|
66 |
+
x = df.index,
|
67 |
+
y = "Close",
|
68 |
+
width=1400, #width of the chart
|
69 |
+
height=750, #height of the chart
|
70 |
+
)
|
71 |
+
#remove the background of the back label
|
72 |
+
fig_line.update_layout(
|
73 |
+
plot_bgcolor="rgba(0,0,0,0)", #rgba means transparent
|
74 |
+
xaxis=(dict(showgrid=False)) #dont show the grid
|
75 |
+
)
|
76 |
+
#plot the chart
|
77 |
+
st.plotly_chart(fig_line, use_container_width=True)
|
78 |
+
st.markdown("""---""")
|
79 |
+
|
80 |
+
|
81 |
+
st.subheader("Closing Price vs Time with 100MA of "+str(user_input)) #Header
|
82 |
+
ma100=df.Close.rolling(100).mean()
|
83 |
+
#plot a line graph
|
84 |
+
fig_line = px.line(
|
85 |
+
ma100,
|
86 |
+
x = df.index,
|
87 |
+
y = ma100,
|
88 |
+
width=1400, #width of the chart
|
89 |
+
height=750, #height of the chart
|
90 |
+
)
|
91 |
+
#remove the background of the back label
|
92 |
+
fig_line.update_layout(
|
93 |
+
plot_bgcolor="rgba(0,0,0,0)", #rgba means transparent
|
94 |
+
xaxis=(dict(showgrid=False)) #dont show the grid
|
95 |
+
)
|
96 |
+
#plot the chart
|
97 |
+
st.plotly_chart(fig_line, use_container_width=True)
|
98 |
+
st.markdown("""---""")
|
99 |
+
|
100 |
+
|
101 |
+
st.subheader("Closing Price vs Time with 1 year moving average of "+str(user_input)) #Header
|
102 |
+
ma365=df.Close.rolling(365).mean()
|
103 |
+
#plot a line graph
|
104 |
+
fig_line = px.line(
|
105 |
+
ma365,
|
106 |
+
x = df.index,
|
107 |
+
y = ma365,
|
108 |
+
width=1400, #width of the chart
|
109 |
+
height=750, #height of the chart
|
110 |
+
)
|
111 |
+
#remove the background of the back label
|
112 |
+
fig_line.update_layout(
|
113 |
+
plot_bgcolor="rgba(0,0,0,0)", #rgba means transparent
|
114 |
+
xaxis=(dict(showgrid=False)) #dont show the grid
|
115 |
+
)
|
116 |
+
#plot the chart
|
117 |
+
st.plotly_chart(fig_line, use_container_width=True)
|
118 |
+
st.markdown("""---""")
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
#Splitting data into training and testing
|
123 |
+
|
124 |
+
data_training= pd.DataFrame(df['Close'][0:int(len(df)*0.7)])
|
125 |
+
data_testing= pd.DataFrame(df['Close'][int(len(df)*0.7):int(len(df))])
|
126 |
+
ydate= date[int(len(df)*0.7):int(len(df))]
|
127 |
+
print(data_training.shape)
|
128 |
+
print(data_testing.shape)
|
129 |
+
|
130 |
+
#normalising data
|
131 |
+
from sklearn.preprocessing import MinMaxScaler
|
132 |
+
scaler=MinMaxScaler(feature_range=(0,1))
|
133 |
+
|
134 |
+
dataset_train = scaler.fit_transform(data_training)
|
135 |
+
dataset_test = scaler.transform(data_testing)
|
136 |
+
|
137 |
+
def create_dataset(df):
|
138 |
+
x = []
|
139 |
+
y = []
|
140 |
+
for i in range(50, df.shape[0]):
|
141 |
+
x.append(df[i-50:i, 0])
|
142 |
+
y.append(df[i, 0])
|
143 |
+
x = np.array(x)
|
144 |
+
y = np.array(y)
|
145 |
+
return x,y
|
146 |
+
|
147 |
+
#Creating dataset
|
148 |
+
x_train, y_train = create_dataset(dataset_train)
|
149 |
+
x_test, y_test = create_dataset(dataset_test)
|
150 |
+
|
151 |
+
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))
|
152 |
+
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))
|
153 |
+
|
154 |
+
#Load my model
|
155 |
+
model=load_model('stock_prediction.h5')
|
156 |
+
|
157 |
+
predictions = model.predict(x_test)
|
158 |
+
predictions = scaler.inverse_transform(predictions)
|
159 |
+
y_test_scaled = scaler.inverse_transform(y_test.reshape(-1, 1))
|
160 |
+
|
161 |
+
cydate=ydate[50:]
|
162 |
+
st.markdown("""---""")
|
163 |
+
st.subheader("Actual Vs Predicted Price Graph for "+user_input)
|
164 |
+
fig, ax = plt.subplots(figsize=(16,8))
|
165 |
+
ax.set_facecolor('#000041')
|
166 |
+
ax.plot(cydate,y_test_scaled, color='red', label='Original price')
|
167 |
+
plt.plot(cydate,predictions, color='cyan', label='Predicted price')
|
168 |
+
plt.xlabel("Date")
|
169 |
+
plt.ylabel("Price")
|
170 |
+
plt.title("Stocks for the company "+str(user_input))
|
171 |
+
plt.legend()
|
172 |
+
st.pyplot(fig)
|
173 |
+
|
174 |
+
st.markdown("""---""")
|
requirements.txt
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==1.2.0
|
2 |
+
aiofiles==22.1.0
|
3 |
+
altair==4.2.0
|
4 |
+
anyio==3.6.1
|
5 |
+
appnope==0.1.3
|
6 |
+
argon2-cffi==21.3.0
|
7 |
+
argon2-cffi-bindings==21.2.0
|
8 |
+
astroid==2.11.7
|
9 |
+
asttokens==2.0.5
|
10 |
+
astunparse==1.6.3
|
11 |
+
attrs==22.1.0
|
12 |
+
Babel==2.10.3
|
13 |
+
backcall==0.2.0
|
14 |
+
beautifulsoup4==4.11.1
|
15 |
+
bert-extractive-summarizer==0.4.2
|
16 |
+
bleach==5.0.1
|
17 |
+
blinker==1.5
|
18 |
+
blis==0.7.9
|
19 |
+
boto3==1.26.18
|
20 |
+
botocore==1.29.18
|
21 |
+
cached-property==1.5.2
|
22 |
+
cachetools==5.2.0
|
23 |
+
catalogue==2.0.8
|
24 |
+
certifi==2022.6.15
|
25 |
+
cffi==1.15.1
|
26 |
+
charset-normalizer==2.1.0
|
27 |
+
ci-info==0.3.0
|
28 |
+
click==8.1.3
|
29 |
+
commonmark==0.9.1
|
30 |
+
confection==0.0.3
|
31 |
+
configobj==5.0.6
|
32 |
+
configparser==5.3.0
|
33 |
+
cycler==0.11.0
|
34 |
+
cymem==2.0.7
|
35 |
+
debugpy==1.6.2
|
36 |
+
decorator==5.1.1
|
37 |
+
defusedxml==0.7.1
|
38 |
+
dill==0.3.5.1
|
39 |
+
docopt==0.6.2
|
40 |
+
docx==0.2.4
|
41 |
+
entrypoints==0.4
|
42 |
+
etelemetry==0.3.0
|
43 |
+
executing==0.8.3
|
44 |
+
fastjsonschema==2.16.1
|
45 |
+
filelock==3.8.0
|
46 |
+
fitz==0.0.1.dev2
|
47 |
+
Flask==2.2.2
|
48 |
+
Flask-SQLAlchemy==3.0.2
|
49 |
+
flatbuffers==1.12
|
50 |
+
fonttools==4.34.4
|
51 |
+
frontend==0.0.3
|
52 |
+
future==0.18.2
|
53 |
+
gast==0.4.0
|
54 |
+
gitdb==4.0.9
|
55 |
+
GitPython==3.1.27
|
56 |
+
google-auth==2.9.1
|
57 |
+
google-auth-oauthlib==0.4.6
|
58 |
+
google-pasta==0.2.0
|
59 |
+
greenlet==2.0.1
|
60 |
+
grpcio==1.47.0
|
61 |
+
gTTS==2.2.4
|
62 |
+
h11==0.14.0
|
63 |
+
h5py==3.7.0
|
64 |
+
httplib2==0.21.0
|
65 |
+
huggingface-hub==0.11.1
|
66 |
+
idna==3.3
|
67 |
+
importlib-metadata==4.12.0
|
68 |
+
inflection==0.5.1
|
69 |
+
ipykernel==6.15.1
|
70 |
+
ipython==8.4.0
|
71 |
+
ipython-genutils==0.2.0
|
72 |
+
ipywidgets==7.7.1
|
73 |
+
isodate==0.6.1
|
74 |
+
isort==5.10.1
|
75 |
+
itsdangerous==2.1.2
|
76 |
+
jedi==0.18.1
|
77 |
+
Jinja2==3.1.2
|
78 |
+
jmespath==1.0.1
|
79 |
+
joblib==1.1.0
|
80 |
+
json5==0.9.10
|
81 |
+
jsonschema==4.9.1
|
82 |
+
jupyter-client==7.3.4
|
83 |
+
jupyter-core==4.11.1
|
84 |
+
jupyter-server==1.18.1
|
85 |
+
jupyterlab==3.4.5
|
86 |
+
jupyterlab-pygments==0.2.2
|
87 |
+
jupyterlab-widgets==1.1.1
|
88 |
+
jupyterlab_server==2.15.1
|
89 |
+
keras==2.9.0
|
90 |
+
Keras-Preprocessing==1.1.2
|
91 |
+
kiwisolver==1.4.3
|
92 |
+
langcodes==3.3.0
|
93 |
+
lazy-object-proxy==1.7.1
|
94 |
+
libclang==14.0.6
|
95 |
+
looseversion==1.0.2
|
96 |
+
lxml==4.9.1
|
97 |
+
Markdown==3.4.1
|
98 |
+
MarkupSafe==2.1.1
|
99 |
+
matplotlib==3.5.2
|
100 |
+
matplotlib-inline==0.1.3
|
101 |
+
mccabe==0.7.0
|
102 |
+
mistune==0.8.4
|
103 |
+
murmurhash==1.0.9
|
104 |
+
mypy-extensions==0.4.3
|
105 |
+
mysql-connector==2.2.9
|
106 |
+
mysql-connector-python-rf==2.2.2
|
107 |
+
nbclassic==0.4.3
|
108 |
+
nbclient==0.6.6
|
109 |
+
nbconvert==6.5.0
|
110 |
+
nbformat==5.4.0
|
111 |
+
nest-asyncio==1.5.5
|
112 |
+
networkx==2.8.8
|
113 |
+
nibabel==4.0.2
|
114 |
+
nipype==1.8.5
|
115 |
+
nltk==3.7
|
116 |
+
notebook==6.4.12
|
117 |
+
notebook-shim==0.1.0
|
118 |
+
numpy==1.23.1
|
119 |
+
oauthlib==3.2.0
|
120 |
+
opencv-python==4.6.0.66
|
121 |
+
opt-einsum==3.3.0
|
122 |
+
packaging==21.3
|
123 |
+
pandas==1.4.3
|
124 |
+
pandas-datareader==0.10.0
|
125 |
+
pandocfilters==1.5.0
|
126 |
+
parso==0.8.3
|
127 |
+
passlib==1.7.4
|
128 |
+
pathlib==1.0.1
|
129 |
+
pathy==0.10.0
|
130 |
+
pexpect==4.8.0
|
131 |
+
pickleshare==0.7.5
|
132 |
+
Pillow==9.2.0
|
133 |
+
pipreqs==0.4.11
|
134 |
+
platformdirs==2.5.2
|
135 |
+
plotly==5.9.0
|
136 |
+
preshed==3.0.8
|
137 |
+
prometheus-client==0.14.1
|
138 |
+
prompt-toolkit==3.0.30
|
139 |
+
protobuf==3.19.4
|
140 |
+
prov==2.0.0
|
141 |
+
psutil==5.9.1
|
142 |
+
ptyprocess==0.7.0
|
143 |
+
pure-eval==0.2.2
|
144 |
+
py4j==0.10.9.5
|
145 |
+
pyarrow==9.0.0
|
146 |
+
pyasn1==0.4.8
|
147 |
+
pyasn1-modules==0.2.8
|
148 |
+
pycparser==2.21
|
149 |
+
pydantic==1.10.2
|
150 |
+
pydeck==0.7.1
|
151 |
+
pydot==1.4.2
|
152 |
+
Pygments==2.12.0
|
153 |
+
pylint==2.14.4
|
154 |
+
Pympler==1.0.1
|
155 |
+
PyMuPDF==1.21.0
|
156 |
+
pyparsing==3.0.9
|
157 |
+
pyrsistent==0.18.1
|
158 |
+
pyspark==3.3.0
|
159 |
+
pytesseract==0.3.10
|
160 |
+
python-dateutil==2.8.2
|
161 |
+
python-docx==0.8.11
|
162 |
+
pytils==0.4.1
|
163 |
+
pytz==2022.1
|
164 |
+
pytz-deprecation-shim==0.1.0.post0
|
165 |
+
pyxnat==1.5
|
166 |
+
PyYAML==6.0
|
167 |
+
pyzmq==23.2.0
|
168 |
+
qrcode==7.3.1
|
169 |
+
rdflib==6.2.0
|
170 |
+
regex==2022.10.31
|
171 |
+
requests==2.28.1
|
172 |
+
requests-oauthlib==1.3.1
|
173 |
+
rich==12.5.1
|
174 |
+
rsa==4.9
|
175 |
+
s3transfer==0.6.0
|
176 |
+
scikit-learn==1.1.1
|
177 |
+
scipy==1.9.0
|
178 |
+
seaborn==0.11.2
|
179 |
+
semver==2.13.0
|
180 |
+
Send2Trash==1.8.0
|
181 |
+
sentence-transformers==2.2.2
|
182 |
+
sentencepiece==0.1.97
|
183 |
+
simplejson==3.18.0
|
184 |
+
six==1.16.0
|
185 |
+
smart-open==5.2.1
|
186 |
+
smmap==5.0.0
|
187 |
+
sniffio==1.2.0
|
188 |
+
soupsieve==2.3.2.post1
|
189 |
+
spacy==3.4.3
|
190 |
+
spacy-legacy==3.0.10
|
191 |
+
spacy-loggers==1.0.3
|
192 |
+
SQLAlchemy==1.4.44
|
193 |
+
sqlalchemy-orm==1.2.3
|
194 |
+
srsly==2.4.5
|
195 |
+
stack-data==0.3.0
|
196 |
+
starlette==0.23.0
|
197 |
+
streamlit==1.11.1
|
198 |
+
streamlit-lottie==0.0.3
|
199 |
+
tenacity==8.0.1
|
200 |
+
tensorboard==2.9.1
|
201 |
+
tensorboard-data-server==0.6.1
|
202 |
+
tensorboard-plugin-wit==1.8.1
|
203 |
+
tensorflow==2.9.1
|
204 |
+
tensorflow-estimator==2.9.0
|
205 |
+
tensorflow-io-gcs-filesystem==0.26.0
|
206 |
+
termcolor==1.1.0
|
207 |
+
terminado==0.15.0
|
208 |
+
thinc==8.1.5
|
209 |
+
threadpoolctl==3.1.0
|
210 |
+
tinycss2==1.1.1
|
211 |
+
tokenizers==0.13.2
|
212 |
+
toml==0.10.2
|
213 |
+
tomli==2.0.1
|
214 |
+
tomlkit==0.11.1
|
215 |
+
tools==0.1.9
|
216 |
+
toolz==0.12.0
|
217 |
+
torch==1.13.0
|
218 |
+
torchvision==0.14.0
|
219 |
+
tornado==6.2
|
220 |
+
tqdm==4.64.1
|
221 |
+
traitlets==5.3.0
|
222 |
+
traits==6.3.2
|
223 |
+
transformers==4.24.0
|
224 |
+
typer==0.7.0
|
225 |
+
typing-inspect==0.8.0
|
226 |
+
typing_extensions==4.3.0
|
227 |
+
tzdata==2022.1
|
228 |
+
tzlocal==4.2
|
229 |
+
urllib3==1.26.11
|
230 |
+
uvicorn==0.20.0
|
231 |
+
validators==0.20.0
|
232 |
+
wasabi==0.10.1
|
233 |
+
wcwidth==0.2.5
|
234 |
+
webencodings==0.5.1
|
235 |
+
websocket-client==1.4.0
|
236 |
+
Werkzeug==2.2.2
|
237 |
+
widgetsnbextension==3.6.1
|
238 |
+
wrapt==1.14.1
|
239 |
+
yarg==0.1.9
|
240 |
+
zipp==3.8.1
|
stock_prediction.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:230bec19c7ac3b71d78e29f788fa7155b55e6c5836872c26c1c809de4c14f463
|
3 |
+
size 3195144
|