Spaces:
Sleeping
Sleeping
Commit
Browse files- Pages/Recommender App.py +14 -15
- anime_rec.csv +0 -0
- anime_data_cleaned.csv → rec_data.csv +0 -0
- scrape_anime.py +150 -0
- similarity_matrix.pkl +0 -3
Pages/Recommender App.py
CHANGED
@@ -7,11 +7,10 @@ import pickle
|
|
7 |
@st.cache_data
|
8 |
def load_data():
|
9 |
try:
|
10 |
-
anime_data = pd.read_csv(r"
|
11 |
-
anime_posters = pd.read_csv(r"anime_data_cleaned.csv")
|
12 |
except:
|
13 |
st.error("Dataset Not Found")
|
14 |
-
return anime_data
|
15 |
|
16 |
|
17 |
# Uncomment this if you want to load the model
|
@@ -25,17 +24,17 @@ def load_data():
|
|
25 |
|
26 |
|
27 |
# similarity = load_model()
|
28 |
-
anime_data
|
29 |
|
30 |
|
31 |
# Fetching the poster and url of the anime
|
32 |
def fetch_anime_url(anime_id):
|
33 |
-
url =
|
34 |
return url
|
35 |
|
36 |
|
37 |
def fetch_poster(anime_id):
|
38 |
-
poster =
|
39 |
return poster
|
40 |
|
41 |
|
@@ -83,33 +82,33 @@ def recommender_page():
|
|
83 |
|
84 |
if st.button("Recommendation"):
|
85 |
if anime_select == "Top 8 Animes":
|
86 |
-
top8 =
|
87 |
col1, col2, col3, col4 = st.columns(4)
|
88 |
with col1:
|
89 |
-
st.write(f"[{top8.iloc[0].title}]({top8.iloc[0].
|
90 |
st.image(top8.iloc[0].poster)
|
91 |
with col2:
|
92 |
-
st.write(f"[{top8.iloc[1].title}]({top8.iloc[1].
|
93 |
st.image(top8.iloc[1].poster)
|
94 |
with col3:
|
95 |
-
st.write(f"[{top8.iloc[2].title}]({top8.iloc[2].
|
96 |
st.image(top8.iloc[2].poster)
|
97 |
with col4:
|
98 |
-
st.write(f"[{top8.iloc[3].title}]({top8.iloc[3].
|
99 |
st.image(top8.iloc[3].poster)
|
100 |
|
101 |
col5, col6, col7, col8 = st.columns(4)
|
102 |
with col5:
|
103 |
-
st.write(f"[{top8.iloc[4].title}]({top8.iloc[4].
|
104 |
st.image(top8.iloc[4].poster)
|
105 |
with col6:
|
106 |
-
st.write(f"[{top8.iloc[5].title}]({top8.iloc[5].
|
107 |
st.image(top8.iloc[5].poster)
|
108 |
with col7:
|
109 |
-
st.write(f"[{top8.iloc[6].title}]({top8.iloc[6].
|
110 |
st.image(top8.iloc[6].poster)
|
111 |
with col8:
|
112 |
-
st.write(f"[{top8.iloc[7].title}]({top8.iloc[7].
|
113 |
st.image(top8.iloc[7].poster)
|
114 |
else:
|
115 |
(
|
|
|
7 |
@st.cache_data
|
8 |
def load_data():
|
9 |
try:
|
10 |
+
anime_data = pd.read_csv(r"rec_data.csv")
|
|
|
11 |
except:
|
12 |
st.error("Dataset Not Found")
|
13 |
+
return anime_data
|
14 |
|
15 |
|
16 |
# Uncomment this if you want to load the model
|
|
|
24 |
|
25 |
|
26 |
# similarity = load_model()
|
27 |
+
anime_data = load_data()
|
28 |
|
29 |
|
30 |
# Fetching the poster and url of the anime
|
31 |
def fetch_anime_url(anime_id):
|
32 |
+
url = anime_data[anime_data["anime_id"] == anime_id].urls.values[0]
|
33 |
return url
|
34 |
|
35 |
|
36 |
def fetch_poster(anime_id):
|
37 |
+
poster = anime_data[anime_data["anime_id"] == anime_id].poster.values[0]
|
38 |
return poster
|
39 |
|
40 |
|
|
|
82 |
|
83 |
if st.button("Recommendation"):
|
84 |
if anime_select == "Top 8 Animes":
|
85 |
+
top8 = anime_data.sort_values("score", ascending=False).head(8)
|
86 |
col1, col2, col3, col4 = st.columns(4)
|
87 |
with col1:
|
88 |
+
st.write(f"[{top8.iloc[0].title}]({top8.iloc[0].anime_url})")
|
89 |
st.image(top8.iloc[0].poster)
|
90 |
with col2:
|
91 |
+
st.write(f"[{top8.iloc[1].title}]({top8.iloc[1].anime_url})")
|
92 |
st.image(top8.iloc[1].poster)
|
93 |
with col3:
|
94 |
+
st.write(f"[{top8.iloc[2].title}]({top8.iloc[2].anime_url})")
|
95 |
st.image(top8.iloc[2].poster)
|
96 |
with col4:
|
97 |
+
st.write(f"[{top8.iloc[3].title}]({top8.iloc[3].anime_url})")
|
98 |
st.image(top8.iloc[3].poster)
|
99 |
|
100 |
col5, col6, col7, col8 = st.columns(4)
|
101 |
with col5:
|
102 |
+
st.write(f"[{top8.iloc[4].title}]({top8.iloc[4].anime_url})")
|
103 |
st.image(top8.iloc[4].poster)
|
104 |
with col6:
|
105 |
+
st.write(f"[{top8.iloc[5].title}]({top8.iloc[5].anime_url})")
|
106 |
st.image(top8.iloc[5].poster)
|
107 |
with col7:
|
108 |
+
st.write(f"[{top8.iloc[6].title}]({top8.iloc[6].anime_url})")
|
109 |
st.image(top8.iloc[6].poster)
|
110 |
with col8:
|
111 |
+
st.write(f"[{top8.iloc[7].title}]({top8.iloc[7].anime_url})")
|
112 |
st.image(top8.iloc[7].poster)
|
113 |
else:
|
114 |
(
|
anime_rec.csv
DELETED
The diff for this file is too large to render.
See raw diff
|
|
anime_data_cleaned.csv → rec_data.csv
RENAMED
The diff for this file is too large to render.
See raw diff
|
|
scrape_anime.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from bs4 import BeautifulSoup
|
3 |
+
import pandas as pd
|
4 |
+
from concurrent.futures import ThreadPoolExecutor
|
5 |
+
import requests
|
6 |
+
from tqdm import tqdm
|
7 |
+
import warnings as w
|
8 |
+
|
9 |
+
w.filterwarnings("ignore")
|
10 |
+
|
11 |
+
|
12 |
+
no_of_page = int(
|
13 |
+
BeautifulSoup(requests.get("https://aniwatch.to/az-list").content, "lxml")
|
14 |
+
.find("nav", attrs={"aria-label": "Page navigation"})
|
15 |
+
.find_all("li")[-1]
|
16 |
+
.find("a")["href"]
|
17 |
+
.split("=")[1]
|
18 |
+
)
|
19 |
+
landing_page_url = "https://aniwatch.to/az-list"
|
20 |
+
page_urls = [
|
21 |
+
f"{landing_page_url}/?page={i}" if i != 1 else landing_page_url
|
22 |
+
for i in range(1, no_of_page + 1)
|
23 |
+
]
|
24 |
+
|
25 |
+
# Scraping the data from all the pages
|
26 |
+
|
27 |
+
anime_urls = []
|
28 |
+
|
29 |
+
for url in tqdm(page_urls):
|
30 |
+
page = requests.get(url)
|
31 |
+
soup = BeautifulSoup(page.content, "html.parser")
|
32 |
+
|
33 |
+
# Getting the url for the anime page
|
34 |
+
|
35 |
+
for anime in soup.find_all("div", class_="film-poster"):
|
36 |
+
anime = anime.find("a")["href"]
|
37 |
+
page = "https://aniwatch.to" + anime
|
38 |
+
anime_urls.append(page)
|
39 |
+
pass
|
40 |
+
pass
|
41 |
+
|
42 |
+
anime_url = pd.DataFrame(anime_urls, columns=["anime_url"])
|
43 |
+
anime_url.to_csv("anime_url.csv", index=False)
|
44 |
+
|
45 |
+
|
46 |
+
# def process_url(url):
|
47 |
+
# soup = BeautifulSoup(requests.get(url).content, "html.parser")
|
48 |
+
|
49 |
+
# anime_poster = soup.find("div", class_="film-poster").find("img")["src"]
|
50 |
+
|
51 |
+
# # Getting the name of the anime
|
52 |
+
|
53 |
+
# anime_title = soup.find("h2", class_="film-name dynamic-name").text
|
54 |
+
|
55 |
+
# # Getting the overview of the anime
|
56 |
+
|
57 |
+
# anime_overview = anime_overview = (
|
58 |
+
# soup.find("div", class_="item item-title w-hide")
|
59 |
+
# .find("div", class_="text")
|
60 |
+
# .text
|
61 |
+
# )
|
62 |
+
|
63 |
+
# # Creating an object of the div containing all the details of the anime
|
64 |
+
|
65 |
+
# soup = soup.find("div", class_="anisc-info")
|
66 |
+
|
67 |
+
# # Extract MAL Score
|
68 |
+
# mal_score_element = soup.find("span", {"class": "item-head"}, text="MAL Score:")
|
69 |
+
# anime_mal_score = (
|
70 |
+
# mal_score_element.find_next_sibling("span", {"class": "name"}).text.strip()
|
71 |
+
# if mal_score_element
|
72 |
+
# else "NA"
|
73 |
+
# )
|
74 |
+
|
75 |
+
# # Extract Studios
|
76 |
+
# studios_element = soup.find("span", {"class": "item-head"}, text="Studios:")
|
77 |
+
# anime_studio = (
|
78 |
+
# studios_element.find_next("a", {"class": "name"}).text.strip()
|
79 |
+
# if studios_element
|
80 |
+
# else "NA"
|
81 |
+
# )
|
82 |
+
|
83 |
+
# # Extract Producers
|
84 |
+
# producers_element = soup.find("span", {"class": "item-head"}, text="Producers:")
|
85 |
+
# anime_producer = (
|
86 |
+
# [
|
87 |
+
# producer.text.strip()
|
88 |
+
# for producer in producers_element.find_next_siblings("a")
|
89 |
+
# ]
|
90 |
+
# if producers_element
|
91 |
+
# else ["NA"]
|
92 |
+
# )
|
93 |
+
|
94 |
+
# # Extract Genres
|
95 |
+
# genres_element = soup.find("span", {"class": "item-head"}, text="Genres:")
|
96 |
+
# anime_genres = (
|
97 |
+
# [genre.text.strip() for genre in genres_element.find_next_siblings("a")]
|
98 |
+
# if genres_element
|
99 |
+
# else ["NA"]
|
100 |
+
# )
|
101 |
+
|
102 |
+
# return (
|
103 |
+
# anime_poster,
|
104 |
+
# anime_title,
|
105 |
+
# anime_overview,
|
106 |
+
# anime_mal_score,
|
107 |
+
# anime_studio,
|
108 |
+
# anime_producer,
|
109 |
+
# anime_genres,
|
110 |
+
# )
|
111 |
+
|
112 |
+
|
113 |
+
# def create_df_parallel(anime_urls, num_threads=4):
|
114 |
+
# anime_poster_list = []
|
115 |
+
# anime_title_list = []
|
116 |
+
# anime_overview_list = []
|
117 |
+
# anime_mal_score_list = []
|
118 |
+
# anime_studio_list = []
|
119 |
+
# anime_producer_list = []
|
120 |
+
# anime_genres_list = []
|
121 |
+
|
122 |
+
# with ThreadPoolExecutor(max_workers=num_threads) as executor:
|
123 |
+
# results = executor.map(process_url, anime_urls)
|
124 |
+
|
125 |
+
# for result in results:
|
126 |
+
# anime_poster_list.append(result[0])
|
127 |
+
# anime_title_list.append(result[1])
|
128 |
+
# anime_overview_list.append(result[2])
|
129 |
+
# anime_mal_score_list.append(result[3])
|
130 |
+
# anime_studio_list.append(result[4])
|
131 |
+
# anime_producer_list.append(result[5])
|
132 |
+
# anime_genres_list.append(result[6])
|
133 |
+
|
134 |
+
# anime_dict = {
|
135 |
+
# "anime_poster": anime_poster_list,
|
136 |
+
# "anime_title": anime_title_list,
|
137 |
+
# "anime_overview": anime_overview_list,
|
138 |
+
# "anime_mal_score": anime_mal_score_list,
|
139 |
+
# "anime_studio": anime_studio_list,
|
140 |
+
# "anime_producer": anime_producer_list,
|
141 |
+
# "anime_genres": anime_genres_list,
|
142 |
+
# }
|
143 |
+
|
144 |
+
# anime_df = pd.DataFrame(anime_dict)
|
145 |
+
# return anime_df
|
146 |
+
|
147 |
+
|
148 |
+
# anime_df = create_df_parallel(anime_urls)
|
149 |
+
# anime_df.head()
|
150 |
+
# anime_df.to_csv("anime_data.csv", index=False)
|
similarity_matrix.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:6467e01f6ad99f76155ccae156d96e285d22408947461b215eb0772730298888
|
3 |
-
size 248912835
|
|
|
|
|
|
|
|