Harsh502s commited on
Commit
e1f4ca7
·
1 Parent(s): facfe25
Files changed (2) hide show
  1. Pages/About.py +20 -19
  2. Pages/Models.py +11 -1
Pages/About.py CHANGED
@@ -1,46 +1,47 @@
1
  import streamlit as st
2
 
3
 
4
- # Display the about page of the app with information about the creator, code, and data
5
  def about_page():
6
- st.title("About Us")
7
  with st.container():
8
- col = st.columns([1, 1])
9
  with col[0]:
 
10
  st.write("\n")
11
  st.write("\n")
12
- st.write("\n")
13
- st.write(
14
- "This app was created by [Harshit Singh](https://harsh502s.github.io), Poorvi Singh and Samruddhi Raskar as a part of their MSc Data Science 3rd semester project."
15
  )
16
  st.write("\n")
17
- st.write("The code for this app can be found [here]( ).")
 
 
 
18
  st.write("\n")
19
- st.write(
20
- "The data on which these models are trained can be found [here](https://www.kaggle.com/datasets/harsh502s/stackexchange-tag-dataset)."
 
21
  )
22
  with col[1]:
23
- st.image("Group.svg", width=300)
24
 
25
  st.write("\n")
26
  st.write("\n")
27
 
28
  with st.container():
29
- col = st.columns([1, 2])
30
  with col[0]:
31
  st.image("Robot.svg", width=350)
32
  with col[1]:
33
  st.title("Models Used:")
34
- st.write(
35
- """1. [BERTopic](https://maartengr.github.io/BERTopic/api/bertopic.html#:~:text=BERTopic%20is%20a%20topic%20modeling,words%20in%20the%20topic%20descriptions.)
36
- is a topic modeling technique that leverages BERT embeddings and c-TF-IDF to create dense clusters allowing for easily interpretable topics whilst keeping important words in the topic descriptions."""
37
  )
38
- st.write(
39
- """2. [KeyBERT](https://maartengr.github.io/KeyBERT/#:~:text=KeyBERT%20is%20a%20minimal%20and,most%20similar%20to%20a%20document.)
40
- is a minimal and easy-to-use keyword extraction technique that leverages BERT embeddings to create keywords and keyphrases that are most similar to a document."""
41
  )
42
- st.write(
43
- """3. Convolutional Neural Networks (CNNs) are used for text classification. CNNs can identify patterns in text data, such as bigrams, trigrams, or n-grams. CNNs are translation invariant, so they can detect these patterns regardless of their position in the sentence."""
44
  )
45
 
46
 
 
1
  import streamlit as st
2
 
3
 
4
+ # Display the about page of the app with information about the creator, code and data.
5
  def about_page():
 
6
  with st.container():
7
+ col = st.columns([1.5, 1])
8
  with col[0]:
9
+ st.title("About Us")
10
  st.write("\n")
11
  st.write("\n")
12
+ st.markdown(
13
+ """##### This app was created by [Harshit Singh](https://harsh502s.github.io), Poorvi Singh and Samriddhi Raskar as a part of their MSc Data Science 3rd semester project."""
 
14
  )
15
  st.write("\n")
16
+ st.markdown(
17
+ """##### The code for this app can be found [here](https://github.com/Harsh502s/Autonomous-Text-Tagging-System)""",
18
+ unsafe_allow_html=True,
19
+ )
20
  st.write("\n")
21
+ st.markdown(
22
+ """##### The data on which these models are trained can be found [here](https://www.kaggle.com/datasets/harsh502s/stackexchange-tag-dataset/data).""",
23
+ unsafe_allow_html=True,
24
  )
25
  with col[1]:
26
+ st.image("Group.svg", width=325)
27
 
28
  st.write("\n")
29
  st.write("\n")
30
 
31
  with st.container():
32
+ col = st.columns([1.5, 2])
33
  with col[0]:
34
  st.image("Robot.svg", width=350)
35
  with col[1]:
36
  st.title("Models Used:")
37
+ st.markdown(
38
+ """###### 1. BERTopic is a topic modeling technique that leverages BERT embeddings and c-TF-IDF to create dense clusters allowing for easily interpretable topics whilst keeping important words in the topic descriptions."""
 
39
  )
40
+ st.markdown(
41
+ """###### 2. KeyBERT is a minimal and easy-to-use keyword extraction technique that leverages BERT embeddings to create keywords and keyphrases that are most similar to a document."""
 
42
  )
43
+ st.markdown(
44
+ """###### 3. Convolutional Neural Networks (CNNs) are used for text classification. CNNs can identify patterns in text data, such as bigrams, trigrams, or n-grams. CNNs are translation invariant, so they can detect these patterns regardless of their position in the sentence."""
45
  )
46
 
47
 
Pages/Models.py CHANGED
@@ -175,6 +175,16 @@ def semi_unsupervised_page_keybert():
175
 
176
  # Display the model page of the app
177
  def model_page():
 
 
 
 
 
 
 
 
 
 
178
  st.title("Select a model to use:")
179
  with st.container():
180
  tab1, tab2, tab3 = st.tabs(
@@ -187,7 +197,7 @@ def model_page():
187
  with tab3:
188
  unsupervised_page_bertopic()
189
  with st.container():
190
- with st.expander("Example Texts", expanded=True):
191
  st.markdown(
192
  """
193
  ### Here are 5 examples of questions from Stack Exchange. Try them out!
 
175
 
176
  # Display the model page of the app
177
  def model_page():
178
+ stype_for_page = """
179
+ <style>
180
+ button.st-emotion-cache-c766yy.ef3psqc11:hover {
181
+ scale: 1.07;
182
+ transition-duration: 0.3s;
183
+ }
184
+ </style>
185
+ """
186
+ st.markdown(stype_for_page, unsafe_allow_html=True)
187
+
188
  st.title("Select a model to use:")
189
  with st.container():
190
  tab1, tab2, tab3 = st.tabs(
 
197
  with tab3:
198
  unsupervised_page_bertopic()
199
  with st.container():
200
+ with st.expander("Example Texts", expanded=False):
201
  st.markdown(
202
  """
203
  ### Here are 5 examples of questions from Stack Exchange. Try them out!