Spaces:
Runtime error
Runtime error
HarshV1315
commited on
Commit
•
ec9188f
1
Parent(s):
43f1117
Upload 5 files
Browse files- .dockerignore +5 -0
- Dockerfile +20 -0
- app.py +97 -0
- requirements.txt +5 -0
- tactic_predict.pt +3 -0
.dockerignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
*.pyc
|
3 |
+
*.pyo
|
4 |
+
*.pyd
|
5 |
+
.env
|
Dockerfile
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use an official Python runtime as a parent image
|
2 |
+
FROM python:3.9-slim
|
3 |
+
|
4 |
+
# Set the working directory in the container
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Copy the current directory contents into the container at /app
|
8 |
+
COPY . /app
|
9 |
+
|
10 |
+
# Install any needed packages specified in requirements.txt
|
11 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
12 |
+
|
13 |
+
# Make port 5000 available to the world outside this container
|
14 |
+
EXPOSE 5000
|
15 |
+
|
16 |
+
# Define environment variable
|
17 |
+
ENV FLASK_APP=app.py
|
18 |
+
|
19 |
+
# Run app.py when the container launches
|
20 |
+
CMD ["flask", "run", "--host", "0.0.0.0"]
|
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, render_template, request, jsonify
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import numpy as np
|
5 |
+
from transformers import AutoTokenizer, AutoModel
|
6 |
+
import nvdlib
|
7 |
+
|
8 |
+
# Flask app initialization
|
9 |
+
app = Flask(__name__)
|
10 |
+
|
11 |
+
# Define the model architecture
|
12 |
+
class Model(nn.Module):
|
13 |
+
def __init__(self):
|
14 |
+
super(Model, self).__init__()
|
15 |
+
self.transformer_model = AutoModel.from_pretrained('jackaduma/SecRoBERTa')
|
16 |
+
self.dropout = nn.Dropout(0.3)
|
17 |
+
self.output = nn.Linear(768, 14)
|
18 |
+
|
19 |
+
def forward(self, input_ids, attention_mask=None):
|
20 |
+
_, o2 = self.transformer_model(
|
21 |
+
input_ids=input_ids,
|
22 |
+
attention_mask=attention_mask,
|
23 |
+
return_dict=False
|
24 |
+
)
|
25 |
+
x = self.dropout(o2)
|
26 |
+
out = self.output(x)
|
27 |
+
return out
|
28 |
+
|
29 |
+
# Function to predict MITRE ATT&CK techniques
|
30 |
+
def predict_techniques(model, tokenizer, cve_description, device):
|
31 |
+
tokenized_input = tokenizer.encode_plus(
|
32 |
+
cve_description,
|
33 |
+
max_length=320,
|
34 |
+
padding='max_length',
|
35 |
+
truncation=True,
|
36 |
+
return_attention_mask=True,
|
37 |
+
return_tensors='pt'
|
38 |
+
)
|
39 |
+
input_ids = tokenized_input['input_ids'].to(device)
|
40 |
+
attention_mask = tokenized_input['attention_mask'].to(device)
|
41 |
+
with torch.no_grad():
|
42 |
+
logits = model(input_ids, attention_mask)
|
43 |
+
probs = torch.sigmoid(logits).cpu().numpy()
|
44 |
+
|
45 |
+
predicted_techniques = np.round(probs)
|
46 |
+
return predicted_techniques
|
47 |
+
|
48 |
+
# Global variables for model and tokenizer
|
49 |
+
global_model = None
|
50 |
+
global_tokenizer = None
|
51 |
+
|
52 |
+
# Lazy loading function to get the model and tokenizer
|
53 |
+
def get_model_and_tokenizer(device='cpu'):
|
54 |
+
global global_model, global_tokenizer
|
55 |
+
if global_model is None or global_tokenizer is None:
|
56 |
+
global_model = Model()
|
57 |
+
global_model.load_state_dict(torch.load('tactic_predict.pt', map_location=device, weights_only=True))
|
58 |
+
global_model.to(device)
|
59 |
+
global_model.eval()
|
60 |
+
global_tokenizer = AutoTokenizer.from_pretrained('jackaduma/SecRoBERTa')
|
61 |
+
return global_model, global_tokenizer
|
62 |
+
|
63 |
+
# Route for the home page
|
64 |
+
@app.route('/')
|
65 |
+
def home():
|
66 |
+
return render_template('index.html')
|
67 |
+
|
68 |
+
# Route to handle form submission and return results
|
69 |
+
@app.route('/predict', methods=['POST'])
|
70 |
+
def predict():
|
71 |
+
cve_id = request.form['cve_id']
|
72 |
+
r = nvdlib.searchCVE(cveId=cve_id)[0]
|
73 |
+
desc_list = r.descriptions
|
74 |
+
cve_data = next(desc.value for desc in desc_list if desc.lang == "en")
|
75 |
+
|
76 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
77 |
+
|
78 |
+
# Load model and tokenizer lazily
|
79 |
+
model, tokenizer = get_model_and_tokenizer(device)
|
80 |
+
|
81 |
+
predicted_techniques = predict_techniques(model, tokenizer, cve_data, device)
|
82 |
+
|
83 |
+
tactic_names = [
|
84 |
+
"Reconnaissance", "Resource Development", "Initial Access", "Execution",
|
85 |
+
"Persistence", "Privilege Escalation", "Defense Evasion",
|
86 |
+
"Credential Access", "Discovery", "Lateral Movement", "Collection",
|
87 |
+
"Command and Control", "Exfiltration", "Impact"
|
88 |
+
]
|
89 |
+
|
90 |
+
predicted_tactic_names = [tactic_names[i] for i, val in enumerate(predicted_techniques[0]) if val == 1]
|
91 |
+
|
92 |
+
return render_template('result.html', tactics=predicted_tactic_names, cve_id=cve_id, cve_desc=cve_data)
|
93 |
+
|
94 |
+
# Run the app
|
95 |
+
if __name__ == "__main__":
|
96 |
+
app.run(host="0.0.0.0", port=7860)
|
97 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Flask
|
2 |
+
torch
|
3 |
+
numpy
|
4 |
+
transformers
|
5 |
+
nvdlib
|
tactic_predict.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bdbe380766df249f0c50081b3a482e6eab588552603c23329087342ed4190870
|
3 |
+
size 333893590
|