import streamlit as st import nltk from nltk.sentiment.vader import SentimentIntensityAnalyzer # Ensure the VADER lexicon is downloaded nltk.download('vader_lexicon') class SentimentAnalyzer: def __init__(self): self.analyzer = SentimentIntensityAnalyzer() def analyze_sentiment(self, sentence): return self.analyzer.polarity_scores(sentence) def fool(): analyzer = SentimentAnalyzer() st.title("Sentiment Analysis App using VADER") st.write("Enter a sentence to analyze its sentiment:") # Input text box for user input sentence = st.text_input("Input sentence:") if st.button("Analyze"): if sentence: # Perform sentiment analysis result = analyzer.analyze_sentiment(sentence) # Interpret sentiment label compound_score = result['compound'] if compound_score >= 0.05: sentiment_type = 'Positive' elif compound_score <= -0.05: sentiment_type = 'Negative' else: sentiment_type = 'Neutral' # Display sentiment analysis result st.write(f"Sentiment: {sentiment_type}, Score: {compound_score:.4f}") # Call fool function directly if the script is executed fool()