Spaces:
Runtime error
Runtime error
Harshithtd
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -7,21 +7,31 @@ from gradio_image_prompter import ImagePrompter
|
|
7 |
import spaces
|
8 |
|
9 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
-
|
|
|
|
|
11 |
slimsam_processor = SamProcessor.from_pretrained("nielsr/slimsam-50-uniform")
|
12 |
|
|
|
|
|
|
|
|
|
|
|
13 |
@spaces.GPU
|
14 |
-
def sam_box_inference(image, x_min, y_min, x_max, y_max):
|
15 |
-
|
|
|
|
|
|
|
16 |
Image.fromarray(image),
|
17 |
input_boxes=[[[[x_min, y_min, x_max, y_max]]]],
|
18 |
return_tensors="pt"
|
19 |
).to(device)
|
20 |
|
21 |
with torch.no_grad():
|
22 |
-
outputs =
|
23 |
|
24 |
-
mask =
|
25 |
outputs.pred_masks.cpu(),
|
26 |
inputs["original_sizes"].cpu(),
|
27 |
inputs["reshaped_input_sizes"].cpu()
|
@@ -31,27 +41,98 @@ def sam_box_inference(image, x_min, y_min, x_max, y_max):
|
|
31 |
print(mask.shape)
|
32 |
return [(mask, "mask")]
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
def infer_box(prompts):
|
|
|
35 |
image = prompts["image"]
|
36 |
if image is None:
|
37 |
-
|
38 |
points = prompts["points"][0]
|
39 |
if points is None:
|
40 |
-
|
41 |
print(points)
|
42 |
-
return [(image, sam_box_inference(image, points[0], points[1], points[3], points[4]))]
|
43 |
-
|
44 |
-
with gr.Blocks(title="SlimSAM Box Prompt") as demo:
|
45 |
-
gr.Markdown("# SlimSAM Box Prompt")
|
46 |
-
gr.Markdown("In this demo, you can upload an image and draw a box for SlimSAM to process.")
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
with gr.Row():
|
49 |
with gr.Column():
|
50 |
im = ImagePrompter()
|
51 |
btn = gr.Button("Submit")
|
52 |
with gr.Column():
|
53 |
-
|
|
|
54 |
|
55 |
-
btn.click(infer_box, inputs=im, outputs=[output_box_slimsam])
|
56 |
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import spaces
|
8 |
|
9 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
sam_model = SamModel.from_pretrained("facebook/sam-vit-huge").to("cuda")
|
11 |
+
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-huge")
|
12 |
+
slimsam_model = SamModel.from_pretrained("nielsr/slimsam-50-uniform").to("cuda")
|
13 |
slimsam_processor = SamProcessor.from_pretrained("nielsr/slimsam-50-uniform")
|
14 |
|
15 |
+
def get_processor_and_model(slim: bool):
|
16 |
+
if slim:
|
17 |
+
return slimsam_processor, slimsam_model
|
18 |
+
return sam_processor, sam_model
|
19 |
+
|
20 |
@spaces.GPU
|
21 |
+
def sam_box_inference(image, x_min, y_min, x_max, y_max, *, slim=False):
|
22 |
+
|
23 |
+
processor, model = get_processor_and_model(slim)
|
24 |
+
|
25 |
+
inputs = processor(
|
26 |
Image.fromarray(image),
|
27 |
input_boxes=[[[[x_min, y_min, x_max, y_max]]]],
|
28 |
return_tensors="pt"
|
29 |
).to(device)
|
30 |
|
31 |
with torch.no_grad():
|
32 |
+
outputs = model(**inputs)
|
33 |
|
34 |
+
mask = processor.image_processor.post_process_masks(
|
35 |
outputs.pred_masks.cpu(),
|
36 |
inputs["original_sizes"].cpu(),
|
37 |
inputs["reshaped_input_sizes"].cpu()
|
|
|
41 |
print(mask.shape)
|
42 |
return [(mask, "mask")]
|
43 |
|
44 |
+
@spaces.GPU
|
45 |
+
def sam_point_inference(image, x, y, *, slim=False):
|
46 |
+
|
47 |
+
processor, model = get_processor_and_model(slim)
|
48 |
+
|
49 |
+
inputs = processor(
|
50 |
+
image,
|
51 |
+
input_points=[[[x, y]]],
|
52 |
+
return_tensors="pt").to(device)
|
53 |
+
|
54 |
+
with torch.no_grad():
|
55 |
+
outputs = model(**inputs)
|
56 |
+
|
57 |
+
mask = processor.post_process_masks(
|
58 |
+
outputs.pred_masks.cpu(),
|
59 |
+
inputs["original_sizes"].cpu(),
|
60 |
+
inputs["reshaped_input_sizes"].cpu()
|
61 |
+
)[0][0][0].numpy()
|
62 |
+
mask = mask[np.newaxis, ...]
|
63 |
+
print(type(mask))
|
64 |
+
print(mask.shape)
|
65 |
+
return [(mask, "mask")]
|
66 |
+
|
67 |
+
def infer_point(img):
|
68 |
+
if img is None:
|
69 |
+
gr.Error("Please upload an image and select a point.")
|
70 |
+
if img["background"] is None:
|
71 |
+
gr.Error("Please upload an image and select a point.")
|
72 |
+
# background (original image) layers[0] ( point prompt) composite (total image)
|
73 |
+
image = img["background"].convert("RGB")
|
74 |
+
point_prompt = img["layers"][0]
|
75 |
+
total_image = img["composite"]
|
76 |
+
img_arr = np.array(point_prompt)
|
77 |
+
if not np.any(img_arr):
|
78 |
+
gr.Error("Please select a point on top of the image.")
|
79 |
+
else:
|
80 |
+
nonzero_indices = np.nonzero(img_arr)
|
81 |
+
img_arr = np.array(point_prompt)
|
82 |
+
nonzero_indices = np.nonzero(img_arr)
|
83 |
+
center_x = int(np.mean(nonzero_indices[1]))
|
84 |
+
center_y = int(np.mean(nonzero_indices[0]))
|
85 |
+
print("Point inference returned.")
|
86 |
+
return ((image, sam_point_inference(image, center_x, center_y, slim=True)),
|
87 |
+
(image, sam_point_inference(image, center_x, center_y)))
|
88 |
+
|
89 |
def infer_box(prompts):
|
90 |
+
# background (original image) layers[0] ( point prompt) composite (total image)
|
91 |
image = prompts["image"]
|
92 |
if image is None:
|
93 |
+
gr.Error("Please upload an image and draw a box before submitting")
|
94 |
points = prompts["points"][0]
|
95 |
if points is None:
|
96 |
+
gr.Error("Please draw a box before submitting.")
|
97 |
print(points)
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
+
# x_min = points[0] x_max = points[3] y_min = points[1] y_max = points[4]
|
100 |
+
return ((image, sam_box_inference(image, points[0], points[1], points[3], points[4], slim=True)),
|
101 |
+
(image, sam_box_inference(image, points[0], points[1], points[3], points[4])))
|
102 |
+
with gr.Blocks(title="SlimSAM") as demo:
|
103 |
+
gr.Markdown("# SlimSAM")
|
104 |
+
gr.Markdown("SlimSAM is the pruned-distilled version of SAM that is smaller.")
|
105 |
+
gr.Markdown("In this demo, you can compare SlimSAM and SAM outputs in point and box prompts.")
|
106 |
+
|
107 |
+
with gr.Tab("Box Prompt"):
|
108 |
+
with gr.Row():
|
109 |
+
with gr.Column(scale=1):
|
110 |
+
# Title
|
111 |
+
gr.Markdown("To try box prompting, simply upload and image and draw a box on it.")
|
112 |
with gr.Row():
|
113 |
with gr.Column():
|
114 |
im = ImagePrompter()
|
115 |
btn = gr.Button("Submit")
|
116 |
with gr.Column():
|
117 |
+
output_box_slimsam = gr.AnnotatedImage(label="SlimSAM Output")
|
118 |
+
output_box_sam = gr.AnnotatedImage(label="SAM Output")
|
119 |
|
|
|
120 |
|
121 |
+
btn.click(infer_box, inputs=im, outputs=[output_box_slimsam, output_box_sam])
|
122 |
+
|
123 |
+
with gr.Tab("Point Prompt"):
|
124 |
+
with gr.Row():
|
125 |
+
with gr.Column(scale=1):
|
126 |
+
# Title
|
127 |
+
gr.Markdown("To try point prompting, simply upload and image and leave a dot on it.")
|
128 |
+
with gr.Row():
|
129 |
+
with gr.Column():
|
130 |
+
im = gr.ImageEditor(
|
131 |
+
type="pil",
|
132 |
+
)
|
133 |
+
with gr.Column():
|
134 |
+
output_slimsam = gr.AnnotatedImage(label="SlimSAM Output")
|
135 |
+
output_sam = gr.AnnotatedImage(label="SAM Output")
|
136 |
+
|
137 |
+
im.change(infer_point, inputs=im, outputs=[output_slimsam, output_sam])
|
138 |
+
demo.launch(debug=True)
|