Spaces:
Sleeping
Sleeping
Harshithtd
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torchvision import models, transforms
|
3 |
+
from PIL import Image
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
# Updated class names with 'plaque' in front of 'calculus' and 'gingivitis'
|
7 |
+
class_names = [
|
8 |
+
"plaque_calculus",
|
9 |
+
"caries",
|
10 |
+
"plaque_gingivitis",
|
11 |
+
"hypodontia",
|
12 |
+
"mouth_ulcer",
|
13 |
+
"tooth_discoloration"
|
14 |
+
]
|
15 |
+
|
16 |
+
model = models.resnet50(weights=None)
|
17 |
+
model.fc = torch.nn.Linear(model.fc.in_features, len(class_names))
|
18 |
+
|
19 |
+
model.load_state_dict(torch.load('tooth_model.pth', map_location=torch.device('cpu')))
|
20 |
+
model.eval()
|
21 |
+
|
22 |
+
preprocess = transforms.Compose([
|
23 |
+
transforms.Resize((224, 224)),
|
24 |
+
transforms.ToTensor(),
|
25 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
26 |
+
])
|
27 |
+
|
28 |
+
def predict_image(image):
|
29 |
+
processed_image = preprocess(image).unsqueeze(0)
|
30 |
+
|
31 |
+
with torch.no_grad():
|
32 |
+
outputs = model(processed_image)
|
33 |
+
probabilities = torch.nn.functional.softmax(outputs, dim=1)
|
34 |
+
top_probs, top_indices = torch.topk(probabilities, 3)
|
35 |
+
top_classes = [class_names[idx] for idx in top_indices[0]]
|
36 |
+
|
37 |
+
# Create a result dictionary with class names and probabilities
|
38 |
+
result = {top_classes[i]: top_probs[0][i].item() for i in range(3)}
|
39 |
+
|
40 |
+
return result
|
41 |
+
|
42 |
+
iface = gr.Interface(
|
43 |
+
fn=predict_image,
|
44 |
+
inputs=gr.Image(type="pil"),
|
45 |
+
outputs="label",
|
46 |
+
title="Medical Image Classification",
|
47 |
+
description="Upload an image to predict its class with probabilities of top 3 predictions."
|
48 |
+
)
|
49 |
+
|
50 |
+
iface.launch()
|