import torch from torchvision import models, transforms from PIL import Image import gradio as gr # Updated class names with 'plaque' in front of 'calculus' and 'gingivitis' class_names = [ "plaque_calculus", "caries", "plaque_gingivitis", "hypodontia", "mouth_ulcer", "tooth_discoloration" ] model = models.resnet50(weights=None) model.fc = torch.nn.Linear(model.fc.in_features, len(class_names)) model.load_state_dict(torch.load('tooth_model.pth', map_location=torch.device('cpu'))) model.eval() preprocess = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) def predict_image(image): processed_image = preprocess(image).unsqueeze(0) with torch.no_grad(): outputs = model(processed_image) probabilities = torch.nn.functional.softmax(outputs, dim=1) top_probs, top_indices = torch.topk(probabilities, 2) top_classes = [class_names[idx] for idx in top_indices[0]] # Create a result dictionary with class names and probabilities result = {top_classes[i]: top_probs[0][i].item() for i in range(2)} return result iface = gr.Interface( fn=predict_image, inputs=gr.Image(type="pil"), outputs="label", title="Medical Image Classification", description="Upload an image to predict its class with probabilities of top 2 predictions." ) iface.launch()