File size: 3,310 Bytes
6df7939
 
 
 
 
 
 
 
9b4901f
 
6df7939
9b4901f
 
6df7939
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from PIL import Image
import torch
from threading import Thread
import gradio as gr
from gradio import FileData
import time
import spaces
# Load model directly
from transformers import AutoProcessor, AutoModelForPreTraining

processor = AutoProcessor.from_pretrained("meta-llama/Llama-3.2-11B-Vision-Instruct")
model = AutoModelForPreTraining.from_pretrained("meta-llama/Llama-3.2-11B-Vision-Instruct")

@spaces.CPU
def bot_streaming(message, history, max_new_tokens=250):
    
    txt = message["text"]
    ext_buffer = f"{txt}"
    
    messages = []
    images = []

    for i, msg in enumerate(history): 
        if isinstance(msg[0], tuple):
            messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
            messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
            images.append(Image.open(msg[0][0]).convert("RGB"))
        elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
            pass
        elif isinstance(history[i-1][0], str) and isinstance(msg[0], str):
            messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
            messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})

    if len(message["files"]) == 1:
        if isinstance(message["files"][0], str):
            image = Image.open(message["files"][0]).convert("RGB")
        else:
            image = Image.open(message["files"][0]["path"]).convert("RGB")
        images.append(image)
        messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
    else:
        messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})

    texts = processor.apply_chat_template(messages, add_generation_prompt=True)

    if images == []:
        inputs = processor(text=texts, return_tensors="pt")  # No .to("cuda"), stays on CPU
    else:
        inputs = processor(text=texts, images=images, return_tensors="pt")  # No .to("cuda"), stays on CPU

    streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
    generated_text = ""

    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""

    for new_text in streamer:
        buffer += new_text
        generated_text_without_prompt = buffer
        time.sleep(0.01)
        yield buffer

demo = gr.ChatInterface(
    fn=bot_streaming,
    title="Multimodal Llama",
    examples=[],  # No examples provided
    textbox=gr.MultimodalTextbox(),
    additional_inputs=[gr.Slider(
        minimum=10,
        maximum=500,
        value=250,
        step=10,
        label="Maximum number of new tokens to generate",
    )],
    cache_examples=False,
    description="Try Multimodal Llama by Meta with transformers in this demo. Upload an image, and start chatting about it. To learn more about Llama Vision, visit [our blog post](https://huggingface.co/blog/llama32).",
    stop_btn="Stop Generation",
    fill_height=True,
    multimodal=True
)

demo.launch(debug=True)