import torch import gradio as gr from transformers import pipeline MODEL_NAME = "openai/whisper-large-v3" BATCH_SIZE = 8 device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) def transcribe(audio, task): if audio is None: raise gr.Error("No audio file submitted! Please upload an audio file before submitting your request.") text = pipe(audio, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] return text demo = gr.Interface( fn=transcribe, inputs=[ gr.Audio(type="filepath", label="Audio file"), gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), ], outputs="text", title="Whisper Large V3: Transcribe Audio", description=( "Transcribe audio files with the click of a button! This demo uses the OpenAI Whisper" f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" " of arbitrary length." ), ) demo.launch(enable_queue=True)