File size: 3,252 Bytes
4331eba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import pytesseract
from PIL import Image
import numpy as np
from transformers import LayoutLMTokenizer


pytesseract.pytesseract.tesseract_cmd = r"C:\\Program Files\\Tesseract-OCR\\tesseract.exe"
tokenizer = LayoutLMTokenizer.from_pretrained("microsoft/layoutlm-base-uncased")
def normalize_box(box, width, height):
     return [
         int(1000 * (box[0] / width)),
         int(1000 * (box[1] / height)),
         int(1000 * (box[2] / width)),
         int(1000 * (box[3] / height)),
     ]

def apply_ocr(image):
        # get the image
        # image = Image.open(example['image_path'])

        width, height = image.size
        example={}
        # apply ocr to the image
        ocr_df = pytesseract.image_to_data(image, output_type='data.frame')
        float_cols = ocr_df.select_dtypes('float').columns
        ocr_df = ocr_df.dropna().reset_index(drop=True)
        ocr_df[float_cols] = ocr_df[float_cols].round(0).astype(int)
        ocr_df = ocr_df.replace(r'^\s*$', np.nan, regex=True)
        ocr_df = ocr_df.dropna().reset_index(drop=True)

        # get the words and actual (unnormalized) bounding boxes
        #words = [word for word in ocr_df.text if str(word) != 'nan'])
        words = list(ocr_df.text)
        words = [str(w) for w in words]
        coordinates = ocr_df[['left', 'top', 'width', 'height']]
        actual_boxes = []
        for idx, row in coordinates.iterrows():
            x, y, w, h = tuple(row) # the row comes in (left, top, width, height) format
            actual_box = [x, y, x+w, y+h] # we turn it into (left, top, left+width, top+height) to get the actual box
            actual_boxes.append(actual_box)

        # normalize the bounding boxes
        boxes = []
        for box in actual_boxes:
            boxes.append(normalize_box(box, width, height))

        # add as extra columns
        assert len(words) == len(boxes)
        example['words'] = words
        example['bbox'] = boxes
        return example
def encode_example(example, max_seq_length=512, pad_token_box=[0, 0, 0, 0]):
  words = example['words']
  normalized_word_boxes = example['bbox']

  assert len(words) == len(normalized_word_boxes)

  token_boxes = []
  for word, box in zip(words, normalized_word_boxes):
      word_tokens = tokenizer.tokenize(word)
      token_boxes.extend([box] * len(word_tokens))

  # Truncation of token_boxes
  special_tokens_count = 2
  if len(token_boxes) > max_seq_length - special_tokens_count:
      token_boxes = token_boxes[: (max_seq_length - special_tokens_count)]

  # add bounding boxes of cls + sep tokens
  token_boxes = [[0, 0, 0, 0]] + token_boxes + [[1000, 1000, 1000, 1000]]

  encoding = tokenizer(' '.join(words), padding='max_length', truncation=True)
  # Padding of token_boxes up the bounding boxes to the sequence length.
  input_ids = tokenizer(' '.join(words), truncation=True)["input_ids"]
  padding_length = max_seq_length - len(input_ids)
  token_boxes += [pad_token_box] * padding_length
  encoding['bbox'] = token_boxes

  assert len(encoding['input_ids']) == max_seq_length
  assert len(encoding['attention_mask']) == max_seq_length
  assert len(encoding['token_type_ids']) == max_seq_length
  assert len(encoding['bbox']) == max_seq_length

  return encoding