|
import soundfile as sf |
|
import torch |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import argparse |
|
from glob import glob |
|
import subprocess |
|
import gradio as gr |
|
|
|
|
|
def get_filename(wav_file): |
|
filename_local = wav_file.split('/')[-1][:-4] |
|
filename_new = '/tmp/'+filename_local+'_16.wav' |
|
|
|
|
|
subprocess.call(["sox {} -r {} -b 16 -c 1 {}".format(wav_file, str(16000), filename_new)], shell=True) |
|
return filename_new |
|
|
|
|
|
|
|
def parse_transcription(wav_file): |
|
|
|
|
|
|
|
|
|
|
|
wav_file = get_filename(wav_file.name) |
|
audio_input, sample_rate = sf.read(wav_file) |
|
|
|
|
|
|
|
input_values = processor(audio_input, sampling_rate=16_000, return_tensors="pt").input_values |
|
|
|
|
|
|
|
logits = model(input_values).logits |
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
|
|
|
|
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) |
|
return transcription |
|
|
|
|
|
processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200") |
|
model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200") |
|
|
|
input = gr.inputs.Audio(source="microphone", type="file") |
|
gr.Interface(parse_transcription, inputs = input, outputs="text", |
|
analytics_enabled=False, show_tips=False, enable_queue=True).launch(inline=False); |