Spaces:
Runtime error
Runtime error
File size: 2,472 Bytes
897701e a0727b2 897701e 93fe568 897701e 87045f7 a0727b2 87045f7 a0727b2 897701e dab8972 a0727b2 dab8972 897701e dab8972 897701e dab8972 897701e dab8972 897701e ee68d20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
from PIL import Image
from transformers import CLIPProcessor, CLIPModel
import gradio as gr
import torchvision.transforms as transforms
# Initialize CLIP model and processor
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
def image_similarity(image: Image.Image, positive_prompt: str, negative_prompts: str):
# Convert the PIL Image to a tensor and preprocess
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
image_tensor = transform(image).unsqueeze(0) # Add batch dimension
# Split the negative prompts string into a list of prompts
negative_prompts_list = negative_prompts.split(";")
# Combine positive and negative prompts into one list
prompts = [positive_prompt.strip()] + [np.strip() for np in negative_prompts_list]
# Process prompts and image tensor
inputs = processor(
text=prompts,
images=image_tensor,
return_tensors="pt",
padding=True
)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=1)
# Determine if positive prompt has a higher probability than any of the negative prompts
is_positive_highest = probs[0][0] > max(probs[0][1:])
return bool(is_positive_highest), f"Probability for Positive Prompt: {probs[0][0]:.4f}"
interface = gr.Interface(
fn=image_similarity,
inputs=[
gr.components.Image(type="pil"),
gr.components.Text(label="Enter positive prompt e.g. 'a person drinking a beverage'"),
gr.components.Textbox(label="Enter negative prompts, separated by semicolon e.g. 'an empty scene; person without beverage'", placeholder="negative prompt 1; negative prompt 2; ..."),
],
outputs=[
gr.components.Textbox(label="Result"),
gr.components.Textbox(label="Probability for Positive Prompt")
],
title="Engagify's Image Action Detection",
description="[Author: Ibrahim Hasani] This Method uses CLIP-VIT [Version: BASE-PATCH-16] to determine if an action is being performed in an image or not. (Binary Classifier). It contrasts an Action against multiple negative labels. Ensure the prompts accurately describe the desired detection.",
live=False,
theme=gr.themes.Monochrome(),
)
interface.launch() |