File size: 23,268 Bytes
472aaf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
import cv2
import requests

from PIL import Image
import PIL
from PIL import ImageDraw

from matplotlib import pyplot as plt
import matplotlib
from matplotlib import rcParams

import os
import tempfile
from io import BytesIO
from pathlib import Path
import argparse
import random
import numpy as np
import torch
import matplotlib.cm as cm
import pandas as pd


from transformers import OwlViTProcessor, OwlViTForObjectDetection
from transformers.image_utils import ImageFeatureExtractionMixin


from SuperGluePretrainedNetwork.models.matching import Matching
from SuperGluePretrainedNetwork.models.utils import (compute_pose_error, compute_epipolar_error,
                          estimate_pose,
                          error_colormap, AverageTimer, pose_auc, read_image,
                          rotate_intrinsics, rotate_pose_inplane,
                          scale_intrinsics)

torch.set_grad_enabled(False)




mixin = ImageFeatureExtractionMixin()
model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32")
processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32")


# Use GPU if available
if torch.cuda.is_available():
    device = torch.device("cuda")
else:
    device = torch.device("cpu")


import requests
from PIL import Image, ImageDraw
from io import BytesIO
import matplotlib.pyplot as plt
import numpy as np
import torch
import cv2
import tempfile

def detect_and_crop2(target_image_path, 
                    query_image_path, 
                    model, 
                    processor, 
                    mixin, 
                    device, 
                    threshold=0.5, 
                    nms_threshold=0.3, 
                    visualize=True):
    
    # Open target image
    image = Image.open(target_image_path).convert('RGB')
    image_size = model.config.vision_config.image_size + 5
    image = mixin.resize(image, image_size)
    target_sizes = torch.Tensor([image.size[::-1]])
    
    # Open query image
    query_image = Image.open(query_image_path).convert('RGB')
    image_size = model.config.vision_config.image_size + 5
    query_image = mixin.resize(query_image, image_size)
    
    # Process input and query image
    inputs = processor(images=image, query_images=query_image, return_tensors="pt").to(device)
    
    # Get predictions
    with torch.no_grad():
        outputs = model.image_guided_detection(**inputs)
    
    # Convert predictions to CPU
    img = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2RGB)
    outputs.logits = outputs.logits.cpu()
    outputs.target_pred_boxes = outputs.target_pred_boxes.cpu() 
    
    # Post process the predictions
    results = processor.post_process_image_guided_detection(outputs=outputs, threshold=threshold, nms_threshold=nms_threshold, target_sizes=target_sizes)
    boxes, scores = results[0]["boxes"], results[0]["scores"]

    # If no boxes, return an empty list
    if len(boxes) == 0 and visualize:
        print(f"No boxes detected for image: {target_image_path}")
        fig, ax = plt.subplots(figsize=(6, 6))
        ax.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
        ax.set_title("Original Image")
        ax.axis("off")
        plt.show()
        return []

    # Filter boxes
    img_with_all_boxes = img.copy()
    filtered_boxes = []
    filtered_scores = []
    img_width, img_height = img.shape[1], img.shape[0]
    for box, score in zip(boxes, scores):
        x1, y1, x2, y2 = [int(i) for i in box.tolist()]
        if x1 < 0 or y1 < 0 or x2 < 0 or y2 < 0:
            continue
        if (x2 - x1) / img_width >= 0.94 and (y2 - y1) / img_height >= 0.94:
            continue
        filtered_boxes.append([x1, y1, x2, y2])
        filtered_scores.append(score)
    
    # Draw boxes on original image
    draw = ImageDraw.Draw(image)
    for box in filtered_boxes:
        draw.rectangle(box, outline="red",width=3)
    
    cropped_images = []
    for box in filtered_boxes:
        x1, y1, x2, y2 = box
        cropped_img = img[y1:y2, x1:x2]
        if cropped_img.size != 0:
            cropped_images.append(cropped_img)

    if visualize:
        # Visualization
        if not filtered_boxes:
            fig, ax = plt.subplots(figsize=(6, 6))
            ax.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
            ax.set_title("Original Image")
            ax.axis("off")
            plt.show()
        else:
            fig, axs = plt.subplots(1, len(cropped_images) + 2, figsize=(15, 5))
            axs[0].imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
            axs[0].set_title("Original Image")
            axs[0].axis("off")

            for i, (box, score) in enumerate(zip(filtered_boxes, filtered_scores)):
                x1, y1, x2, y2 = box
                cropped_img = img[y1:y2, x1:x2]
                font = cv2.FONT_HERSHEY_SIMPLEX
                text = f"{score:.2f}"
                cv2.putText(cropped_img, text, (5, cropped_img.shape[0]-10), font, 0.5, (255,0,0), 1, cv2.LINE_AA)
                axs[i+2].imshow(cv2.cvtColor(cropped_img, cv2.COLOR_BGR2RGB))
                axs[i+2].set_title("Score: " + text)
                axs[i+2].axis("off")
            plt.tight_layout()
            plt.show()

    return cropped_images, image  # return original image with boxes drawn

def save_array_to_temp_image(arr):
    # Convert the array to an image
    img = Image.fromarray(arr)
    
    # Create a temporary file for the image
    temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png', dir=tempfile.gettempdir())
    temp_file_name = temp_file.name
    temp_file.close()  # We close it because we're not writing to it directly, PIL will handle the writing
    
    # Save the image to the temp file
    img.save(temp_file_name)

    return temp_file_name

''' 
def process_resize(w: int, h: int, resize_dims: list) -> tuple:
    if len(resize_dims) == 1 and resize_dims[0] > -1:
        scale = resize_dims[0] / max(h, w)
        w_new, h_new = int(round(w * scale)), int(round(h * scale))
        return w_new, h_new
    return w, h
'''

def plot_image_pair(imgs, dpi=100, size=6, pad=.5):
    n = len(imgs)
    assert n == 2, 'number of images must be two'
    figsize = (size*n, size*3/4) if size is not None else None
    _, ax = plt.subplots(1, n, figsize=figsize, dpi=dpi)
    for i in range(n):
        ax[i].imshow(imgs[i], cmap=plt.get_cmap('gray'), vmin=0, vmax=255)
        ax[i].get_yaxis().set_ticks([])
        ax[i].get_xaxis().set_ticks([])
        for spine in ax[i].spines.values():  # remove frame
            spine.set_visible(False)
    plt.tight_layout(pad=pad)

def plot_keypoints(kpts0, kpts1, color='w', ps=2):
    ax = plt.gcf().axes
    ax[0].scatter(kpts0[:, 0], kpts0[:, 1], c=color, s=ps)
    ax[1].scatter(kpts1[:, 0], kpts1[:, 1], c=color, s=ps)

def plot_matches(kpts0, kpts1, color, lw=1.5, ps=4):
    fig = plt.gcf()
    ax = fig.axes
    fig.canvas.draw()

    transFigure = fig.transFigure.inverted()
    fkpts0 = transFigure.transform(ax[0].transData.transform(kpts0))
    fkpts1 = transFigure.transform(ax[1].transData.transform(kpts1))

    fig.lines = [matplotlib.lines.Line2D(
        (fkpts0[i, 0], fkpts1[i, 0]), (fkpts0[i, 1], fkpts1[i, 1]), zorder=1,
        transform=fig.transFigure, c=color[i], linewidth=lw)
                 for i in range(len(kpts0))]
    ax[0].scatter(kpts0[:, 0], kpts0[:, 1], c=color, s=ps)
    ax[1].scatter(kpts1[:, 0], kpts1[:, 1], c=color, s=ps)

def unified_matching_plot2(image0, image1, kpts0, kpts1, mkpts0, mkpts1,
                          color, text, path=None, show_keypoints=False,
                          fast_viz=False, opencv_display=False,
                          opencv_title='matches', small_text=[]):
    
    # Set the background color for the plot
    plt.figure(facecolor='#eeeeee')
    plot_image_pair([image0, image1])

    # Elegant points and lines for matches
    if show_keypoints:
        plot_keypoints(kpts0, kpts1, color='k', ps=4)  
        plot_keypoints(kpts0, kpts1, color='w', ps=2)  
    plot_matches(mkpts0, mkpts1, color, lw=1)  

    fig = plt.gcf()

    # Add text
    fig.text(
        0.01, 0.01, '\n'.join(small_text), transform=fig.axes[0].transAxes,
        fontsize=10, va='bottom', ha='left', color='#333333', fontweight='bold', fontname='Helvetica',
        bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', boxstyle="round,pad=0.3"))

    fig.text(
        0.01, 0.99, '\n'.join(text), transform=fig.axes[0].transAxes,
        fontsize=15, va='top', ha='left', color='#333333', fontweight='bold', fontname='Helvetica',
        bbox=dict(facecolor='white', alpha=0.7, edgecolor='none', boxstyle="round,pad=0.3"))

    # Optional: remove axis for a cleaner look
    plt.axis('off')

    # Convert the figure to an OpenCV image
    buf = BytesIO()
    plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
    buf.seek(0)
    img_arr = np.frombuffer(buf.getvalue(), dtype=np.uint8)
    buf.close()
    img = cv2.imdecode(img_arr, 1)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    # Close the figure to free memory
    plt.close(fig)

    return img

def create_image_pyramid2(image_path, longest_side, scales=[0.25, 0.5, 1.0]):
    original_image = cv2.imread(image_path)
    oh, ow, _ = original_image.shape
    
    # Determine the scaling factor based on the longest side
    if oh > ow:
        output_height = longest_side
        output_width = int((ow / oh) * longest_side)
    else:
        output_width = longest_side
        output_height = int((oh / ow) * longest_side)
    output_size = (output_width, output_height)
    
    pyramid = []
    
    for scale in scales:
        # Resize based on the scale factor
        resized = cv2.resize(original_image, None, fx=scale, fy=scale)
        rh, rw, _ = resized.shape
        
        if scale < 1.0:  # downsampling
            # Calculate the amount of padding required
            dy_top = max((output_size[1] - rh) // 2, 0)
            dy_bottom = output_size[1] - rh - dy_top
            dx_left = max((output_size[0] - rw) // 2, 0)
            dx_right = output_size[0] - rw - dx_left
            
            # Create padded image
            padded = cv2.copyMakeBorder(resized, dy_top, dy_bottom, dx_left, dx_right, cv2.BORDER_CONSTANT, value=[255, 255, 255])
            pyramid.append(padded)
        elif scale > 1.0:  # upsampling
            # We need to crop the image to fit the desired output size
            dy = (rh - output_size[1]) // 2
            dx = (rw - output_size[0]) // 2
            cropped = resized[dy:dy+output_size[1], dx:dx+output_size[0]]
            pyramid.append(cropped)
        else:  # scale == 1.0
            pyramid.append(resized)
            
    return pyramid

# Example usage
# pyramid = create_image_pyramid('path_to_image.jpg', 800)
def image_matching(query_img, target_img, image_dims=[640*2], scale_factors=[0.33,0.66,1], visualize=True, k_thresh=None, m_thresh=None, write=False):

    image1, inp1, scales1 = read_image(target_img, device, [640*2], 0, True)
    query_pyramid = create_image_pyramid2(query_img, image_dims[0], scale_factors)

    all_valid = []
    all_inliers = []
    all_return_imgs = []
    max_matches_img = None
    max_matches = -1

    for idx, query_level in enumerate(query_pyramid):
        temp_file_path = "temp_level_{}.png".format(idx)
        cv2.imwrite(temp_file_path, query_level)
        
        image0, inp0, scales0 = read_image(temp_file_path, device, [640*2], 0, True)
        
        if image0 is None or image1 is None:
            print('Problem reading image pair: {} {}'.format(query_img, target_img))
        else:
            # Matching
            pred = matching({'image0': inp0, 'image1': inp1})
            pred = {k: v[0] for k, v in pred.items()}
            kpts0, kpts1 = pred['keypoints0'], pred['keypoints1']
            matches, conf = pred['matches0'], pred['matching_scores0']
    
            valid = matches > -1
            mkpts0 = kpts0[valid]
            mkpts1 = kpts1[matches[valid]]
            mconf = conf[valid]
            #color = cm.jet(mconf)[:len(mkpts0)]  # Ensure consistent size
            color = cm.jet(mconf.detach().numpy())[:len(mkpts0)]

            all_valid.append(np.sum( valid.tolist() ))
    
            # Convert torch tensors to numpy arrays.
            mkpts0_np = mkpts0.cpu().numpy()
            mkpts1_np = mkpts1.cpu().numpy()

            try: 
            # Use RANSAC to find the homography matrix.
                H, inliers = cv2.findHomography(mkpts0_np, mkpts1_np, cv2.RANSAC, 5.0)
            except:
                H = 0
                inliers = 0
                print ("Not enough points for homography")
            # Convert inliers from shape (N, 1) to shape (N,) and count them.
            num_inliers = np.sum(inliers)
            
            all_inliers.append(num_inliers)
            
            # Visualization
            text = [
                'Engagify Image Matching',
                'Keypoints: {}:{}'.format(len(kpts0), len(kpts1)),
                'Scaling Factor: {}'.format( scale_factors[idx]),
                'Matches: {}'.format(len(mkpts0)),
                'Inliers: {}'.format(num_inliers),
            ]
    
            
            k_thresh = matching.superpoint.config['keypoint_threshold']
            m_thresh = matching.superglue.config['match_threshold']
            
            small_text = [
                'Keypoint Threshold: {:.4f}'.format(k_thresh),
                'Match Threshold: {:.2f}'.format(m_thresh),
            ]

            visualized_img = None  # To store the visualized image
            
            if visualize:
                ret_img = unified_matching_plot2(
                    image0, image1, kpts0, kpts1, mkpts0, mkpts1, color, text, 'Test_Level_{}'.format(idx), True, False, True, 'Matches_Level_{}'.format(idx), small_text)
                all_return_imgs.append(ret_img)
            # Storing image with most matches
            #if len(mkpts0) > max_matches:
            #    max_matches = len(mkpts0)
            #    max_matches_img = 'Matches_Level_{}'.format(idx)
    
    avg_valid = np.sum(all_valid) / len(scale_factors)
    avg_inliers = np.sum(all_inliers) / len(scale_factors)
    
# Convert the image with the most matches to base64 encoded format
#    with open(max_matches_img, "rb") as image_file:
#        encoded_string = base64.b64encode(image_file.read()).decode()
    
    return {'valid':all_valid, 'inliers':all_inliers, 'visualized_image':all_return_imgs} #, encoded_string

# Usage:
#results = image_matching('Samples/Poster/poster_event_small_22.jpg', 'Samples/Images/16.jpeg', visualize=True)
#print (results)

def image_matching_no_pyramid(query_img, target_img, visualize=True, write=False):
    
    image1, inp1, scales1 = read_image(target_img, device, [640*2], 0, True)
    image0, inp0, scales0 = read_image(query_img, device, [640*2], 0, True)
    
    if image0 is None or image1 is None:
        print('Problem reading image pair: {} {}'.format(query_img, target_img))
        return None
    
    # Matching
    pred = matching({'image0': inp0, 'image1': inp1})
    pred = {k: v[0] for k, v in pred.items()}
    kpts0, kpts1 = pred['keypoints0'], pred['keypoints1']
    matches, conf = pred['matches0'], pred['matching_scores0']

    valid = matches > -1
    mkpts0 = kpts0[valid]
    mkpts1 = kpts1[matches[valid]]
    mconf = conf[valid]
    #color = cm.jet(mconf)[:len(mkpts0)]  # Ensure consistent size
    color = cm.jet(mconf.detach().numpy())[:len(mkpts0)]
    
    valid_count = np.sum(valid.tolist())

    # Convert torch tensors to numpy arrays.
    mkpts0_np = mkpts0.cpu().numpy()
    mkpts1_np = mkpts1.cpu().numpy()

    try: 
        # Use RANSAC to find the homography matrix.
        H, inliers = cv2.findHomography(mkpts0_np, mkpts1_np, cv2.RANSAC, 5.0)
    except:
        H = 0
        inliers = 0
        print("Not enough points for homography")
    
    # Convert inliers from shape (N, 1) to shape (N,) and count them.
    num_inliers = np.sum(inliers)

    # Visualization
    text = [
        'Engagify Image Matching',
        'Keypoints: {}:{}'.format(len(kpts0), len(kpts1)),
        'Matches: {}'.format(len(mkpts0)),
        'Inliers: {}'.format(num_inliers),
    ]

    k_thresh = matching.superpoint.config['keypoint_threshold']
    m_thresh = matching.superglue.config['match_threshold']

    small_text = [
        'Keypoint Threshold: {:.4f}'.format(k_thresh),
        'Match Threshold: {:.2f}'.format(m_thresh),
    ]

    visualized_img = None  # To store the visualized image
    
    if visualize:
        visualized_img = unified_matching_plot2(
            image0, image1, kpts0, kpts1, mkpts0, mkpts1, color, text, 'Test_Match', True, False, True, 'Matches', small_text)
    
    return {
        'valid': [valid_count], 
        'inliers': [num_inliers],
        'visualized_image': [visualized_img]
    }

# Usage:
#results = image_matching_no_pyramid('Samples/Poster/poster_event_small_22.jpg', 'Samples/Images/16.jpeg', visualize=True)

# Load the SuperPoint and SuperGlue models.
device = 'cuda' if torch.cuda.is_available() and not opt.force_cpu else 'cpu'
print('Running inference on device \"{}\"'.format(device))
config = {
    'superpoint': {
        'nms_radius': 4,
        'keypoint_threshold': 0.005,
        'max_keypoints': 1024
    },
    'superglue': {
        'weights': 'outdoor',
        'sinkhorn_iterations': 20,
        'match_threshold': 0.2,
    }
}
matching = Matching(config).eval().to(device)

from PIL import Image

def stitch_images(images):
    """Stitches a list of images vertically."""
    if not images:
        # Return a placeholder image if the images list is empty
        return Image.new('RGB', (100, 100), color='gray')

    max_width = max([img.width for img in images])
    total_height = sum(img.height for img in images)

    composite = Image.new('RGB', (max_width, total_height))

    y_offset = 0
    for img in images:
        composite.paste(img, (0, y_offset))
        y_offset += img.height

    return composite

def check_object_in_image3(query_image, target_image, threshold=50, scale_factor=[0.33,0.66,1]):
    decision_on = []
    # Convert cv2 images to PIL images and add them to a list
    images_to_return = []

    cropped_images, bbox_image = detect_and_crop2(target_image_path=target_image, 
                                     query_image_path=query_image, 
                                     model=model, 
                                     processor=processor, 
                                     mixin=mixin, 
                                     device=device, 
                                     visualize=False)
    
    temp_files = [save_array_to_temp_image(i) for i in cropped_images]
    crop_results = [image_matching_no_pyramid(query_image, i, visualize=True) for i in temp_files]

    cropped_visuals = []
    cropped_inliers = []
    for result in crop_results:
        # Add visualized images to the temporary list
        for img in result['visualized_image']:
            cropped_visuals.append(Image.fromarray(img))
        for inliers_ in result['inliers']:
            cropped_inliers.append(inliers_)
    # Stitch the cropped visuals into one image
    images_to_return.append(stitch_images(cropped_visuals))
    
    pyramid_results = image_matching(query_image, target_image, visualize=True, scale_factors=scale_factor)
    
    pyramid_visuals = [Image.fromarray(img) for img in pyramid_results['visualized_image']]
    # Stitch the pyramid visuals into one image
    images_to_return.append(stitch_images(pyramid_visuals))

    # Check inliers and determine if the object is present
    print (cropped_inliers)
    is_present = any(value > threshold for value in cropped_inliers)
    if is_present == True: 
        decision_on.append('Object Detection')
    is_present = any(value > threshold for value in pyramid_results["inliers"])
    if is_present == True: 
        decision_on.append('Pyramid Max Point')
    if is_present == False: 
        decision_on.append("Neither, It Failed All Tests")
    
    # Return results as a dictionary
    return {
        'is_present': is_present,
        'images': images_to_return, 
        'scale factors': scale_factor,  
        'object detection inliers': cropped_inliers,
        'pyramid_inliers' : pyramid_results["inliers"],
        'bbox_image':bbox_image,
        'decision_on':decision_on,
        
    }

# Example call:
#result = check_object_in_image3('Samples/Poster/poster_event_small.jpg', 'Samples/Images/True_Image_3423234.jpeg', 50)
# Accessing the results:
#print(result['is_present'])  # prints True/False
#print(result['images'])  # is a list of 2 stitched images.


import gradio as gr
import cv2
from PIL import Image

def gradio_interface(query_image_path, target_image_path, threshold):
    result = check_object_in_image3(query_image_path, target_image_path, threshold)
    # Depending on how many images are in the list, you can return them like this:
    return result['bbox_image'], result['images'][0], result['object detection inliers'], result['scale factors'], result['pyramid_inliers'], result['images'][1], str(result['is_present']), result['decision_on']


# Define the Gradio interface
interface = gr.Interface(
    fn=gradio_interface,  # function to be called on button press
    inputs=[
        gr.components.Image(label="Query Image (Drop the Image you want to detect here)", type="filepath"),
        gr.components.Image(label="Target Image (Drop the Image youd like to search here)", type="filepath"),
        gr.components.Slider(minimum=0, maximum=200, value=50, step=5, label="Enter the Inlier Threshold"),
    ], 
    outputs=[
        gr.components.Image(label='Filtered Regions of Interest (Candidates)'),
        gr.components.Image(label="Cropped Visuals from Image Guided Object Detection "),
        gr.components.Text(label='Inliers detected for Image Guided Object Detection '),
        gr.components.Text(label='Scale Factors Used for Pyramid (Results below, In Order)'),
        gr.components.Text(label='Inliers detected for Pyramid Search (In Order)'),
        gr.components.Image(label="Pyramid Visuals"),
        gr.components.Textbox(label="Object Present?"),
        gr.components.Textbox(label="Decision Taken Based on?"),
    ],
    theme=gr.themes.Monochrome(),
    title="Engajify's Image Specific Image Recognition + Matching Tool",
    description="[Author: Ibrahim Hasani] \n "
                "   This tool leverages Transformer, Deep Learning, and Traditional Computer Vision techniques to determine if a specified object "
                "(given by the query image) is present within a target image. \n"
                "1. Image-Guided Object Detection where we detect potential regions of interest. (Owl-Vit-Google). \n"
                "2. Pyramid Search that looks at various scales of the target image. Results provide "
                "visual representations of the matching process and a final verdict on the object's presence.\n"
                "3. SuperPoint (MagicLeap) + SuperGlue + Homography to extract inliers, which are thresholded for decision making."
)

interface.launch()