File size: 11,781 Bytes
59fdcbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# %BANNER_BEGIN%
# ---------------------------------------------------------------------
# %COPYRIGHT_BEGIN%
#
#  Magic Leap, Inc. ("COMPANY") CONFIDENTIAL
#
#  Unpublished Copyright (c) 2020
#  Magic Leap, Inc., All Rights Reserved.
#
# NOTICE:  All information contained herein is, and remains the property
# of COMPANY. The intellectual and technical concepts contained herein
# are proprietary to COMPANY and may be covered by U.S. and Foreign
# Patents, patents in process, and are protected by trade secret or
# copyright law.  Dissemination of this information or reproduction of
# this material is strictly forbidden unless prior written permission is
# obtained from COMPANY.  Access to the source code contained herein is
# hereby forbidden to anyone except current COMPANY employees, managers
# or contractors who have executed Confidentiality and Non-disclosure
# agreements explicitly covering such access.
#
# The copyright notice above does not evidence any actual or intended
# publication or disclosure  of  this source code, which includes
# information that is confidential and/or proprietary, and is a trade
# secret, of  COMPANY.   ANY REPRODUCTION, MODIFICATION, DISTRIBUTION,
# PUBLIC  PERFORMANCE, OR PUBLIC DISPLAY OF OR THROUGH USE  OF THIS
# SOURCE CODE  WITHOUT THE EXPRESS WRITTEN CONSENT OF COMPANY IS
# STRICTLY PROHIBITED, AND IN VIOLATION OF APPLICABLE LAWS AND
# INTERNATIONAL TREATIES.  THE RECEIPT OR POSSESSION OF  THIS SOURCE
# CODE AND/OR RELATED INFORMATION DOES NOT CONVEY OR IMPLY ANY RIGHTS
# TO REPRODUCE, DISCLOSE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE,
# USE, OR SELL ANYTHING THAT IT  MAY DESCRIBE, IN WHOLE OR IN PART.
#
# %COPYRIGHT_END%
# ----------------------------------------------------------------------
# %AUTHORS_BEGIN%
#
#  Originating Authors: Paul-Edouard Sarlin
#
# %AUTHORS_END%
# --------------------------------------------------------------------*/
# %BANNER_END%

from copy import deepcopy
from pathlib import Path
from typing import List, Tuple

import torch
from torch import nn


def MLP(channels: List[int], do_bn: bool = True) -> nn.Module:
    """ Multi-layer perceptron """
    n = len(channels)
    layers = []
    for i in range(1, n):
        layers.append(
            nn.Conv1d(channels[i - 1], channels[i], kernel_size=1, bias=True))
        if i < (n-1):
            if do_bn:
                layers.append(nn.BatchNorm1d(channels[i]))
            layers.append(nn.ReLU())
    return nn.Sequential(*layers)


def normalize_keypoints(kpts, image_shape):
    """ Normalize keypoints locations based on image image_shape"""
    _, _, height, width = image_shape
    one = kpts.new_tensor(1)
    size = torch.stack([one*width, one*height])[None]
    center = size / 2
    scaling = size.max(1, keepdim=True).values * 0.7
    return (kpts - center[:, None, :]) / scaling[:, None, :]


class KeypointEncoder(nn.Module):
    """ Joint encoding of visual appearance and location using MLPs"""
    def __init__(self, feature_dim: int, layers: List[int]) -> None:
        super().__init__()
        self.encoder = MLP([3] + layers + [feature_dim])
        nn.init.constant_(self.encoder[-1].bias, 0.0)

    def forward(self, kpts, scores):
        inputs = [kpts.transpose(1, 2), scores.unsqueeze(1)]
        return self.encoder(torch.cat(inputs, dim=1))


def attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor) -> Tuple[torch.Tensor,torch.Tensor]:
    dim = query.shape[1]
    scores = torch.einsum('bdhn,bdhm->bhnm', query, key) / dim**.5
    prob = torch.nn.functional.softmax(scores, dim=-1)
    return torch.einsum('bhnm,bdhm->bdhn', prob, value), prob


class MultiHeadedAttention(nn.Module):
    """ Multi-head attention to increase model expressivitiy """
    def __init__(self, num_heads: int, d_model: int):
        super().__init__()
        assert d_model % num_heads == 0
        self.dim = d_model // num_heads
        self.num_heads = num_heads
        self.merge = nn.Conv1d(d_model, d_model, kernel_size=1)
        self.proj = nn.ModuleList([deepcopy(self.merge) for _ in range(3)])

    def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor) -> torch.Tensor:
        batch_dim = query.size(0)
        query, key, value = [l(x).view(batch_dim, self.dim, self.num_heads, -1)
                             for l, x in zip(self.proj, (query, key, value))]
        x, _ = attention(query, key, value)
        return self.merge(x.contiguous().view(batch_dim, self.dim*self.num_heads, -1))


class AttentionalPropagation(nn.Module):
    def __init__(self, feature_dim: int, num_heads: int):
        super().__init__()
        self.attn = MultiHeadedAttention(num_heads, feature_dim)
        self.mlp = MLP([feature_dim*2, feature_dim*2, feature_dim])
        nn.init.constant_(self.mlp[-1].bias, 0.0)

    def forward(self, x: torch.Tensor, source: torch.Tensor) -> torch.Tensor:
        message = self.attn(x, source, source)
        return self.mlp(torch.cat([x, message], dim=1))


class AttentionalGNN(nn.Module):
    def __init__(self, feature_dim: int, layer_names: List[str]) -> None:
        super().__init__()
        self.layers = nn.ModuleList([
            AttentionalPropagation(feature_dim, 4)
            for _ in range(len(layer_names))])
        self.names = layer_names

    def forward(self, desc0: torch.Tensor, desc1: torch.Tensor) -> Tuple[torch.Tensor,torch.Tensor]:
        for layer, name in zip(self.layers, self.names):
            if name == 'cross':
                src0, src1 = desc1, desc0
            else:  # if name == 'self':
                src0, src1 = desc0, desc1
            delta0, delta1 = layer(desc0, src0), layer(desc1, src1)
            desc0, desc1 = (desc0 + delta0), (desc1 + delta1)
        return desc0, desc1


def log_sinkhorn_iterations(Z: torch.Tensor, log_mu: torch.Tensor, log_nu: torch.Tensor, iters: int) -> torch.Tensor:
    """ Perform Sinkhorn Normalization in Log-space for stability"""
    u, v = torch.zeros_like(log_mu), torch.zeros_like(log_nu)
    for _ in range(iters):
        u = log_mu - torch.logsumexp(Z + v.unsqueeze(1), dim=2)
        v = log_nu - torch.logsumexp(Z + u.unsqueeze(2), dim=1)
    return Z + u.unsqueeze(2) + v.unsqueeze(1)


def log_optimal_transport(scores: torch.Tensor, alpha: torch.Tensor, iters: int) -> torch.Tensor:
    """ Perform Differentiable Optimal Transport in Log-space for stability"""
    b, m, n = scores.shape
    one = scores.new_tensor(1)
    ms, ns = (m*one).to(scores), (n*one).to(scores)

    bins0 = alpha.expand(b, m, 1)
    bins1 = alpha.expand(b, 1, n)
    alpha = alpha.expand(b, 1, 1)

    couplings = torch.cat([torch.cat([scores, bins0], -1),
                           torch.cat([bins1, alpha], -1)], 1)

    norm = - (ms + ns).log()
    log_mu = torch.cat([norm.expand(m), ns.log()[None] + norm])
    log_nu = torch.cat([norm.expand(n), ms.log()[None] + norm])
    log_mu, log_nu = log_mu[None].expand(b, -1), log_nu[None].expand(b, -1)

    Z = log_sinkhorn_iterations(couplings, log_mu, log_nu, iters)
    Z = Z - norm  # multiply probabilities by M+N
    return Z


def arange_like(x, dim: int):
    return x.new_ones(x.shape[dim]).cumsum(0) - 1  # traceable in 1.1


class SuperGlue(nn.Module):
    """SuperGlue feature matching middle-end

    Given two sets of keypoints and locations, we determine the
    correspondences by:
      1. Keypoint Encoding (normalization + visual feature and location fusion)
      2. Graph Neural Network with multiple self and cross-attention layers
      3. Final projection layer
      4. Optimal Transport Layer (a differentiable Hungarian matching algorithm)
      5. Thresholding matrix based on mutual exclusivity and a match_threshold

    The correspondence ids use -1 to indicate non-matching points.

    Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew
    Rabinovich. SuperGlue: Learning Feature Matching with Graph Neural
    Networks. In CVPR, 2020. https://arxiv.org/abs/1911.11763

    """
    default_config = {
        'descriptor_dim': 256,
        'weights': 'indoor',
        'keypoint_encoder': [32, 64, 128, 256],
        'GNN_layers': ['self', 'cross'] * 9,
        'sinkhorn_iterations': 100,
        'match_threshold': 0.2,
    }

    def __init__(self, config):
        super().__init__()
        self.config = {**self.default_config, **config}

        self.kenc = KeypointEncoder(
            self.config['descriptor_dim'], self.config['keypoint_encoder'])

        self.gnn = AttentionalGNN(
            feature_dim=self.config['descriptor_dim'], layer_names=self.config['GNN_layers'])

        self.final_proj = nn.Conv1d(
            self.config['descriptor_dim'], self.config['descriptor_dim'],
            kernel_size=1, bias=True)

        bin_score = torch.nn.Parameter(torch.tensor(1.))
        self.register_parameter('bin_score', bin_score)

        assert self.config['weights'] in ['indoor', 'outdoor']
        path = Path(__file__).parent
        path = path / 'weights/superglue_{}.pth'.format(self.config['weights'])
        self.load_state_dict(torch.load(str(path)))
        print('Loaded SuperGlue model (\"{}\" weights)'.format(
            self.config['weights']))

    def forward(self, data):
        """Run SuperGlue on a pair of keypoints and descriptors"""
        desc0, desc1 = data['descriptors0'], data['descriptors1']
        kpts0, kpts1 = data['keypoints0'], data['keypoints1']

        if kpts0.shape[1] == 0 or kpts1.shape[1] == 0:  # no keypoints
            shape0, shape1 = kpts0.shape[:-1], kpts1.shape[:-1]
            return {
                'matches0': kpts0.new_full(shape0, -1, dtype=torch.int),
                'matches1': kpts1.new_full(shape1, -1, dtype=torch.int),
                'matching_scores0': kpts0.new_zeros(shape0),
                'matching_scores1': kpts1.new_zeros(shape1),
            }

        # Keypoint normalization.
        kpts0 = normalize_keypoints(kpts0, data['image0'].shape)
        kpts1 = normalize_keypoints(kpts1, data['image1'].shape)

        # Keypoint MLP encoder.
        desc0 = desc0 + self.kenc(kpts0, data['scores0'])
        desc1 = desc1 + self.kenc(kpts1, data['scores1'])

        # Multi-layer Transformer network.
        desc0, desc1 = self.gnn(desc0, desc1)

        # Final MLP projection.
        mdesc0, mdesc1 = self.final_proj(desc0), self.final_proj(desc1)

        # Compute matching descriptor distance.
        scores = torch.einsum('bdn,bdm->bnm', mdesc0, mdesc1)
        scores = scores / self.config['descriptor_dim']**.5

        # Run the optimal transport.
        scores = log_optimal_transport(
            scores, self.bin_score,
            iters=self.config['sinkhorn_iterations'])

        # Get the matches with score above "match_threshold".
        max0, max1 = scores[:, :-1, :-1].max(2), scores[:, :-1, :-1].max(1)
        indices0, indices1 = max0.indices, max1.indices
        mutual0 = arange_like(indices0, 1)[None] == indices1.gather(1, indices0)
        mutual1 = arange_like(indices1, 1)[None] == indices0.gather(1, indices1)
        zero = scores.new_tensor(0)
        mscores0 = torch.where(mutual0, max0.values.exp(), zero)
        mscores1 = torch.where(mutual1, mscores0.gather(1, indices1), zero)
        valid0 = mutual0 & (mscores0 > self.config['match_threshold'])
        valid1 = mutual1 & valid0.gather(1, indices1)
        indices0 = torch.where(valid0, indices0, indices0.new_tensor(-1))
        indices1 = torch.where(valid1, indices1, indices1.new_tensor(-1))

        return {
            'matches0': indices0, # use -1 for invalid match
            'matches1': indices1, # use -1 for invalid match
            'matching_scores0': mscores0,
            'matching_scores1': mscores1,
        }