|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
import torch |
|
from torch import nn |
|
|
|
def simple_nms(scores, nms_radius: int): |
|
""" Fast Non-maximum suppression to remove nearby points """ |
|
assert(nms_radius >= 0) |
|
|
|
def max_pool(x): |
|
return torch.nn.functional.max_pool2d( |
|
x, kernel_size=nms_radius*2+1, stride=1, padding=nms_radius) |
|
|
|
zeros = torch.zeros_like(scores) |
|
max_mask = scores == max_pool(scores) |
|
for _ in range(2): |
|
supp_mask = max_pool(max_mask.float()) > 0 |
|
supp_scores = torch.where(supp_mask, zeros, scores) |
|
new_max_mask = supp_scores == max_pool(supp_scores) |
|
max_mask = max_mask | (new_max_mask & (~supp_mask)) |
|
return torch.where(max_mask, scores, zeros) |
|
|
|
|
|
def remove_borders(keypoints, scores, border: int, height: int, width: int): |
|
""" Removes keypoints too close to the border """ |
|
mask_h = (keypoints[:, 0] >= border) & (keypoints[:, 0] < (height - border)) |
|
mask_w = (keypoints[:, 1] >= border) & (keypoints[:, 1] < (width - border)) |
|
mask = mask_h & mask_w |
|
return keypoints[mask], scores[mask] |
|
|
|
|
|
def top_k_keypoints(keypoints, scores, k: int): |
|
if k >= len(keypoints): |
|
return keypoints, scores |
|
scores, indices = torch.topk(scores, k, dim=0) |
|
return keypoints[indices], scores |
|
|
|
|
|
def sample_descriptors(keypoints, descriptors, s: int = 8): |
|
""" Interpolate descriptors at keypoint locations """ |
|
b, c, h, w = descriptors.shape |
|
keypoints = keypoints - s / 2 + 0.5 |
|
keypoints /= torch.tensor([(w*s - s/2 - 0.5), (h*s - s/2 - 0.5)], |
|
).to(keypoints)[None] |
|
keypoints = keypoints*2 - 1 |
|
args = {'align_corners': True} if torch.__version__ >= '1.3' else {} |
|
descriptors = torch.nn.functional.grid_sample( |
|
descriptors, keypoints.view(b, 1, -1, 2), mode='bilinear', **args) |
|
descriptors = torch.nn.functional.normalize( |
|
descriptors.reshape(b, c, -1), p=2, dim=1) |
|
return descriptors |
|
|
|
|
|
class SuperPoint(nn.Module): |
|
"""SuperPoint Convolutional Detector and Descriptor |
|
|
|
SuperPoint: Self-Supervised Interest Point Detection and |
|
Description. Daniel DeTone, Tomasz Malisiewicz, and Andrew |
|
Rabinovich. In CVPRW, 2019. https://arxiv.org/abs/1712.07629 |
|
|
|
""" |
|
default_config = { |
|
'descriptor_dim': 256, |
|
'nms_radius': 4, |
|
'keypoint_threshold': 0.005, |
|
'max_keypoints': -1, |
|
'remove_borders': 4, |
|
} |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = {**self.default_config, **config} |
|
|
|
self.relu = nn.ReLU(inplace=True) |
|
self.pool = nn.MaxPool2d(kernel_size=2, stride=2) |
|
c1, c2, c3, c4, c5 = 64, 64, 128, 128, 256 |
|
|
|
self.conv1a = nn.Conv2d(1, c1, kernel_size=3, stride=1, padding=1) |
|
self.conv1b = nn.Conv2d(c1, c1, kernel_size=3, stride=1, padding=1) |
|
self.conv2a = nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1) |
|
self.conv2b = nn.Conv2d(c2, c2, kernel_size=3, stride=1, padding=1) |
|
self.conv3a = nn.Conv2d(c2, c3, kernel_size=3, stride=1, padding=1) |
|
self.conv3b = nn.Conv2d(c3, c3, kernel_size=3, stride=1, padding=1) |
|
self.conv4a = nn.Conv2d(c3, c4, kernel_size=3, stride=1, padding=1) |
|
self.conv4b = nn.Conv2d(c4, c4, kernel_size=3, stride=1, padding=1) |
|
|
|
self.convPa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1) |
|
self.convPb = nn.Conv2d(c5, 65, kernel_size=1, stride=1, padding=0) |
|
|
|
self.convDa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1) |
|
self.convDb = nn.Conv2d( |
|
c5, self.config['descriptor_dim'], |
|
kernel_size=1, stride=1, padding=0) |
|
|
|
path = Path(__file__).parent / 'weights/superpoint_v1.pth' |
|
self.load_state_dict(torch.load(str(path))) |
|
|
|
mk = self.config['max_keypoints'] |
|
if mk == 0 or mk < -1: |
|
raise ValueError('\"max_keypoints\" must be positive or \"-1\"') |
|
|
|
print('Loaded SuperPoint model') |
|
|
|
def forward(self, data): |
|
""" Compute keypoints, scores, descriptors for image """ |
|
|
|
x = self.relu(self.conv1a(data['image'])) |
|
x = self.relu(self.conv1b(x)) |
|
x = self.pool(x) |
|
x = self.relu(self.conv2a(x)) |
|
x = self.relu(self.conv2b(x)) |
|
x = self.pool(x) |
|
x = self.relu(self.conv3a(x)) |
|
x = self.relu(self.conv3b(x)) |
|
x = self.pool(x) |
|
x = self.relu(self.conv4a(x)) |
|
x = self.relu(self.conv4b(x)) |
|
|
|
|
|
cPa = self.relu(self.convPa(x)) |
|
scores = self.convPb(cPa) |
|
scores = torch.nn.functional.softmax(scores, 1)[:, :-1] |
|
b, _, h, w = scores.shape |
|
scores = scores.permute(0, 2, 3, 1).reshape(b, h, w, 8, 8) |
|
scores = scores.permute(0, 1, 3, 2, 4).reshape(b, h*8, w*8) |
|
scores = simple_nms(scores, self.config['nms_radius']) |
|
|
|
|
|
keypoints = [ |
|
torch.nonzero(s > self.config['keypoint_threshold']) |
|
for s in scores] |
|
scores = [s[tuple(k.t())] for s, k in zip(scores, keypoints)] |
|
|
|
|
|
keypoints, scores = list(zip(*[ |
|
remove_borders(k, s, self.config['remove_borders'], h*8, w*8) |
|
for k, s in zip(keypoints, scores)])) |
|
|
|
|
|
if self.config['max_keypoints'] >= 0: |
|
keypoints, scores = list(zip(*[ |
|
top_k_keypoints(k, s, self.config['max_keypoints']) |
|
for k, s in zip(keypoints, scores)])) |
|
|
|
|
|
keypoints = [torch.flip(k, [1]).float() for k in keypoints] |
|
|
|
|
|
cDa = self.relu(self.convDa(x)) |
|
descriptors = self.convDb(cDa) |
|
descriptors = torch.nn.functional.normalize(descriptors, p=2, dim=1) |
|
|
|
|
|
descriptors = [sample_descriptors(k[None], d[None], 8)[0] |
|
for k, d in zip(keypoints, descriptors)] |
|
|
|
return { |
|
'keypoints': keypoints, |
|
'scores': scores, |
|
'descriptors': descriptors, |
|
} |
|
|