|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
import argparse |
|
import random |
|
import numpy as np |
|
import matplotlib.cm as cm |
|
import torch |
|
|
|
|
|
from models.matching import Matching |
|
from models.utils import (compute_pose_error, compute_epipolar_error, |
|
estimate_pose, make_matching_plot, |
|
error_colormap, AverageTimer, pose_auc, read_image, |
|
rotate_intrinsics, rotate_pose_inplane, |
|
scale_intrinsics) |
|
|
|
torch.set_grad_enabled(False) |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser( |
|
description='Image pair matching and pose evaluation with SuperGlue', |
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
|
|
|
parser.add_argument( |
|
'--input_pairs', type=str, default='assets/scannet_sample_pairs_with_gt.txt', |
|
help='Path to the list of image pairs') |
|
parser.add_argument( |
|
'--input_dir', type=str, default='assets/scannet_sample_images/', |
|
help='Path to the directory that contains the images') |
|
parser.add_argument( |
|
'--output_dir', type=str, default='dump_match_pairs/', |
|
help='Path to the directory in which the .npz results and optionally,' |
|
'the visualization images are written') |
|
|
|
parser.add_argument( |
|
'--max_length', type=int, default=-1, |
|
help='Maximum number of pairs to evaluate') |
|
parser.add_argument( |
|
'--resize', type=int, nargs='+', default=[640, 480], |
|
help='Resize the input image before running inference. If two numbers, ' |
|
'resize to the exact dimensions, if one number, resize the max ' |
|
'dimension, if -1, do not resize') |
|
parser.add_argument( |
|
'--resize_float', action='store_true', |
|
help='Resize the image after casting uint8 to float') |
|
|
|
parser.add_argument( |
|
'--superglue', choices={'indoor', 'outdoor'}, default='indoor', |
|
help='SuperGlue weights') |
|
parser.add_argument( |
|
'--max_keypoints', type=int, default=1024, |
|
help='Maximum number of keypoints detected by Superpoint' |
|
' (\'-1\' keeps all keypoints)') |
|
parser.add_argument( |
|
'--keypoint_threshold', type=float, default=0.005, |
|
help='SuperPoint keypoint detector confidence threshold') |
|
parser.add_argument( |
|
'--nms_radius', type=int, default=4, |
|
help='SuperPoint Non Maximum Suppression (NMS) radius' |
|
' (Must be positive)') |
|
parser.add_argument( |
|
'--sinkhorn_iterations', type=int, default=20, |
|
help='Number of Sinkhorn iterations performed by SuperGlue') |
|
parser.add_argument( |
|
'--match_threshold', type=float, default=0.2, |
|
help='SuperGlue match threshold') |
|
|
|
parser.add_argument( |
|
'--viz', action='store_true', |
|
help='Visualize the matches and dump the plots') |
|
parser.add_argument( |
|
'--eval', action='store_true', |
|
help='Perform the evaluation' |
|
' (requires ground truth pose and intrinsics)') |
|
parser.add_argument( |
|
'--fast_viz', action='store_true', |
|
help='Use faster image visualization with OpenCV instead of Matplotlib') |
|
parser.add_argument( |
|
'--cache', action='store_true', |
|
help='Skip the pair if output .npz files are already found') |
|
parser.add_argument( |
|
'--show_keypoints', action='store_true', |
|
help='Plot the keypoints in addition to the matches') |
|
parser.add_argument( |
|
'--viz_extension', type=str, default='png', choices=['png', 'pdf'], |
|
help='Visualization file extension. Use pdf for highest-quality.') |
|
parser.add_argument( |
|
'--opencv_display', action='store_true', |
|
help='Visualize via OpenCV before saving output images') |
|
parser.add_argument( |
|
'--shuffle', action='store_true', |
|
help='Shuffle ordering of pairs before processing') |
|
parser.add_argument( |
|
'--force_cpu', action='store_true', |
|
help='Force pytorch to run in CPU mode.') |
|
|
|
opt = parser.parse_args() |
|
print(opt) |
|
|
|
assert not (opt.opencv_display and not opt.viz), 'Must use --viz with --opencv_display' |
|
assert not (opt.opencv_display and not opt.fast_viz), 'Cannot use --opencv_display without --fast_viz' |
|
assert not (opt.fast_viz and not opt.viz), 'Must use --viz with --fast_viz' |
|
assert not (opt.fast_viz and opt.viz_extension == 'pdf'), 'Cannot use pdf extension with --fast_viz' |
|
|
|
if len(opt.resize) == 2 and opt.resize[1] == -1: |
|
opt.resize = opt.resize[0:1] |
|
if len(opt.resize) == 2: |
|
print('Will resize to {}x{} (WxH)'.format( |
|
opt.resize[0], opt.resize[1])) |
|
elif len(opt.resize) == 1 and opt.resize[0] > 0: |
|
print('Will resize max dimension to {}'.format(opt.resize[0])) |
|
elif len(opt.resize) == 1: |
|
print('Will not resize images') |
|
else: |
|
raise ValueError('Cannot specify more than two integers for --resize') |
|
|
|
with open(opt.input_pairs, 'r') as f: |
|
pairs = [l.split() for l in f.readlines()] |
|
|
|
if opt.max_length > -1: |
|
pairs = pairs[0:np.min([len(pairs), opt.max_length])] |
|
|
|
if opt.shuffle: |
|
random.Random(0).shuffle(pairs) |
|
|
|
if opt.eval: |
|
if not all([len(p) == 38 for p in pairs]): |
|
raise ValueError( |
|
'All pairs should have ground truth info for evaluation.' |
|
'File \"{}\" needs 38 valid entries per row'.format(opt.input_pairs)) |
|
|
|
|
|
device = 'cuda' if torch.cuda.is_available() and not opt.force_cpu else 'cpu' |
|
print('Running inference on device \"{}\"'.format(device)) |
|
config = { |
|
'superpoint': { |
|
'nms_radius': opt.nms_radius, |
|
'keypoint_threshold': opt.keypoint_threshold, |
|
'max_keypoints': opt.max_keypoints |
|
}, |
|
'superglue': { |
|
'weights': opt.superglue, |
|
'sinkhorn_iterations': opt.sinkhorn_iterations, |
|
'match_threshold': opt.match_threshold, |
|
} |
|
} |
|
matching = Matching(config).eval().to(device) |
|
|
|
|
|
input_dir = Path(opt.input_dir) |
|
print('Looking for data in directory \"{}\"'.format(input_dir)) |
|
output_dir = Path(opt.output_dir) |
|
output_dir.mkdir(exist_ok=True, parents=True) |
|
print('Will write matches to directory \"{}\"'.format(output_dir)) |
|
if opt.eval: |
|
print('Will write evaluation results', |
|
'to directory \"{}\"'.format(output_dir)) |
|
if opt.viz: |
|
print('Will write visualization images to', |
|
'directory \"{}\"'.format(output_dir)) |
|
|
|
timer = AverageTimer(newline=True) |
|
for i, pair in enumerate(pairs): |
|
name0, name1 = pair[:2] |
|
stem0, stem1 = Path(name0).stem, Path(name1).stem |
|
matches_path = output_dir / '{}_{}_matches.npz'.format(stem0, stem1) |
|
eval_path = output_dir / '{}_{}_evaluation.npz'.format(stem0, stem1) |
|
viz_path = output_dir / '{}_{}_matches.{}'.format(stem0, stem1, opt.viz_extension) |
|
viz_eval_path = output_dir / \ |
|
'{}_{}_evaluation.{}'.format(stem0, stem1, opt.viz_extension) |
|
|
|
|
|
do_match = True |
|
do_eval = opt.eval |
|
do_viz = opt.viz |
|
do_viz_eval = opt.eval and opt.viz |
|
if opt.cache: |
|
if matches_path.exists(): |
|
try: |
|
results = np.load(matches_path) |
|
except: |
|
raise IOError('Cannot load matches .npz file: %s' % |
|
matches_path) |
|
|
|
kpts0, kpts1 = results['keypoints0'], results['keypoints1'] |
|
matches, conf = results['matches'], results['match_confidence'] |
|
do_match = False |
|
if opt.eval and eval_path.exists(): |
|
try: |
|
results = np.load(eval_path) |
|
except: |
|
raise IOError('Cannot load eval .npz file: %s' % eval_path) |
|
err_R, err_t = results['error_R'], results['error_t'] |
|
precision = results['precision'] |
|
matching_score = results['matching_score'] |
|
num_correct = results['num_correct'] |
|
epi_errs = results['epipolar_errors'] |
|
do_eval = False |
|
if opt.viz and viz_path.exists(): |
|
do_viz = False |
|
if opt.viz and opt.eval and viz_eval_path.exists(): |
|
do_viz_eval = False |
|
timer.update('load_cache') |
|
|
|
if not (do_match or do_eval or do_viz or do_viz_eval): |
|
timer.print('Finished pair {:5} of {:5}'.format(i, len(pairs))) |
|
continue |
|
|
|
|
|
if len(pair) >= 5: |
|
rot0, rot1 = int(pair[2]), int(pair[3]) |
|
else: |
|
rot0, rot1 = 0, 0 |
|
|
|
|
|
image0, inp0, scales0 = read_image( |
|
input_dir / name0, device, opt.resize, rot0, opt.resize_float) |
|
image1, inp1, scales1 = read_image( |
|
input_dir / name1, device, opt.resize, rot1, opt.resize_float) |
|
if image0 is None or image1 is None: |
|
print('Problem reading image pair: {} {}'.format( |
|
input_dir/name0, input_dir/name1)) |
|
exit(1) |
|
timer.update('load_image') |
|
|
|
if do_match: |
|
|
|
pred = matching({'image0': inp0, 'image1': inp1}) |
|
pred = {k: v[0].cpu().numpy() for k, v in pred.items()} |
|
kpts0, kpts1 = pred['keypoints0'], pred['keypoints1'] |
|
matches, conf = pred['matches0'], pred['matching_scores0'] |
|
timer.update('matcher') |
|
|
|
|
|
out_matches = {'keypoints0': kpts0, 'keypoints1': kpts1, |
|
'matches': matches, 'match_confidence': conf} |
|
np.savez(str(matches_path), **out_matches) |
|
|
|
|
|
valid = matches > -1 |
|
mkpts0 = kpts0[valid] |
|
mkpts1 = kpts1[matches[valid]] |
|
mconf = conf[valid] |
|
|
|
if do_eval: |
|
|
|
assert len(pair) == 38, 'Pair does not have ground truth info' |
|
K0 = np.array(pair[4:13]).astype(float).reshape(3, 3) |
|
K1 = np.array(pair[13:22]).astype(float).reshape(3, 3) |
|
T_0to1 = np.array(pair[22:]).astype(float).reshape(4, 4) |
|
|
|
|
|
K0 = scale_intrinsics(K0, scales0) |
|
K1 = scale_intrinsics(K1, scales1) |
|
|
|
|
|
if rot0 != 0 or rot1 != 0: |
|
cam0_T_w = np.eye(4) |
|
cam1_T_w = T_0to1 |
|
if rot0 != 0: |
|
K0 = rotate_intrinsics(K0, image0.shape, rot0) |
|
cam0_T_w = rotate_pose_inplane(cam0_T_w, rot0) |
|
if rot1 != 0: |
|
K1 = rotate_intrinsics(K1, image1.shape, rot1) |
|
cam1_T_w = rotate_pose_inplane(cam1_T_w, rot1) |
|
cam1_T_cam0 = cam1_T_w @ np.linalg.inv(cam0_T_w) |
|
T_0to1 = cam1_T_cam0 |
|
|
|
epi_errs = compute_epipolar_error(mkpts0, mkpts1, T_0to1, K0, K1) |
|
correct = epi_errs < 5e-4 |
|
num_correct = np.sum(correct) |
|
precision = np.mean(correct) if len(correct) > 0 else 0 |
|
matching_score = num_correct / len(kpts0) if len(kpts0) > 0 else 0 |
|
|
|
thresh = 1. |
|
ret = estimate_pose(mkpts0, mkpts1, K0, K1, thresh) |
|
if ret is None: |
|
err_t, err_R = np.inf, np.inf |
|
else: |
|
R, t, inliers = ret |
|
err_t, err_R = compute_pose_error(T_0to1, R, t) |
|
|
|
|
|
out_eval = {'error_t': err_t, |
|
'error_R': err_R, |
|
'precision': precision, |
|
'matching_score': matching_score, |
|
'num_correct': num_correct, |
|
'epipolar_errors': epi_errs} |
|
np.savez(str(eval_path), **out_eval) |
|
timer.update('eval') |
|
|
|
if do_viz: |
|
|
|
color = cm.jet(mconf) |
|
text = [ |
|
'SuperGlue', |
|
'Keypoints: {}:{}'.format(len(kpts0), len(kpts1)), |
|
'Matches: {}'.format(len(mkpts0)), |
|
] |
|
if rot0 != 0 or rot1 != 0: |
|
text.append('Rotation: {}:{}'.format(rot0, rot1)) |
|
|
|
|
|
k_thresh = matching.superpoint.config['keypoint_threshold'] |
|
m_thresh = matching.superglue.config['match_threshold'] |
|
small_text = [ |
|
'Keypoint Threshold: {:.4f}'.format(k_thresh), |
|
'Match Threshold: {:.2f}'.format(m_thresh), |
|
'Image Pair: {}:{}'.format(stem0, stem1), |
|
] |
|
|
|
make_matching_plot( |
|
image0, image1, kpts0, kpts1, mkpts0, mkpts1, color, |
|
text, viz_path, opt.show_keypoints, |
|
opt.fast_viz, opt.opencv_display, 'Matches', small_text) |
|
|
|
timer.update('viz_match') |
|
|
|
if do_viz_eval: |
|
|
|
color = np.clip((epi_errs - 0) / (1e-3 - 0), 0, 1) |
|
color = error_colormap(1 - color) |
|
deg, delta = ' deg', 'Delta ' |
|
if not opt.fast_viz: |
|
deg, delta = '°', '$\\Delta$' |
|
e_t = 'FAIL' if np.isinf(err_t) else '{:.1f}{}'.format(err_t, deg) |
|
e_R = 'FAIL' if np.isinf(err_R) else '{:.1f}{}'.format(err_R, deg) |
|
text = [ |
|
'SuperGlue', |
|
'{}R: {}'.format(delta, e_R), '{}t: {}'.format(delta, e_t), |
|
'inliers: {}/{}'.format(num_correct, (matches > -1).sum()), |
|
] |
|
if rot0 != 0 or rot1 != 0: |
|
text.append('Rotation: {}:{}'.format(rot0, rot1)) |
|
|
|
|
|
k_thresh = matching.superpoint.config['keypoint_threshold'] |
|
m_thresh = matching.superglue.config['match_threshold'] |
|
small_text = [ |
|
'Keypoint Threshold: {:.4f}'.format(k_thresh), |
|
'Match Threshold: {:.2f}'.format(m_thresh), |
|
'Image Pair: {}:{}'.format(stem0, stem1), |
|
] |
|
|
|
make_matching_plot( |
|
image0, image1, kpts0, kpts1, mkpts0, |
|
mkpts1, color, text, viz_eval_path, |
|
opt.show_keypoints, opt.fast_viz, |
|
opt.opencv_display, 'Relative Pose', small_text) |
|
|
|
timer.update('viz_eval') |
|
|
|
timer.print('Finished pair {:5} of {:5}'.format(i, len(pairs))) |
|
|
|
if opt.eval: |
|
|
|
pose_errors = [] |
|
precisions = [] |
|
matching_scores = [] |
|
for pair in pairs: |
|
name0, name1 = pair[:2] |
|
stem0, stem1 = Path(name0).stem, Path(name1).stem |
|
eval_path = output_dir / \ |
|
'{}_{}_evaluation.npz'.format(stem0, stem1) |
|
results = np.load(eval_path) |
|
pose_error = np.maximum(results['error_t'], results['error_R']) |
|
pose_errors.append(pose_error) |
|
precisions.append(results['precision']) |
|
matching_scores.append(results['matching_score']) |
|
thresholds = [5, 10, 20] |
|
aucs = pose_auc(pose_errors, thresholds) |
|
aucs = [100.*yy for yy in aucs] |
|
prec = 100.*np.mean(precisions) |
|
ms = 100.*np.mean(matching_scores) |
|
print('Evaluation Results (mean over {} pairs):'.format(len(pairs))) |
|
print('AUC@5\t AUC@10\t AUC@20\t Prec\t MScore\t') |
|
print('{:.2f}\t {:.2f}\t {:.2f}\t {:.2f}\t {:.2f}\t'.format( |
|
aucs[0], aucs[1], aucs[2], prec, ms)) |
|
|