IbrahimHasani's picture
Upload 95 files
59fdcbd
#! /usr/bin/env python3
#
# %BANNER_BEGIN%
# ---------------------------------------------------------------------
# %COPYRIGHT_BEGIN%
#
# Magic Leap, Inc. ("COMPANY") CONFIDENTIAL
#
# Unpublished Copyright (c) 2020
# Magic Leap, Inc., All Rights Reserved.
#
# NOTICE: All information contained herein is, and remains the property
# of COMPANY. The intellectual and technical concepts contained herein
# are proprietary to COMPANY and may be covered by U.S. and Foreign
# Patents, patents in process, and are protected by trade secret or
# copyright law. Dissemination of this information or reproduction of
# this material is strictly forbidden unless prior written permission is
# obtained from COMPANY. Access to the source code contained herein is
# hereby forbidden to anyone except current COMPANY employees, managers
# or contractors who have executed Confidentiality and Non-disclosure
# agreements explicitly covering such access.
#
# The copyright notice above does not evidence any actual or intended
# publication or disclosure of this source code, which includes
# information that is confidential and/or proprietary, and is a trade
# secret, of COMPANY. ANY REPRODUCTION, MODIFICATION, DISTRIBUTION,
# PUBLIC PERFORMANCE, OR PUBLIC DISPLAY OF OR THROUGH USE OF THIS
# SOURCE CODE WITHOUT THE EXPRESS WRITTEN CONSENT OF COMPANY IS
# STRICTLY PROHIBITED, AND IN VIOLATION OF APPLICABLE LAWS AND
# INTERNATIONAL TREATIES. THE RECEIPT OR POSSESSION OF THIS SOURCE
# CODE AND/OR RELATED INFORMATION DOES NOT CONVEY OR IMPLY ANY RIGHTS
# TO REPRODUCE, DISCLOSE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE,
# USE, OR SELL ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN PART.
#
# %COPYRIGHT_END%
# ----------------------------------------------------------------------
# %AUTHORS_BEGIN%
#
# Originating Authors: Paul-Edouard Sarlin
# Daniel DeTone
# Tomasz Malisiewicz
#
# %AUTHORS_END%
# --------------------------------------------------------------------*/
# %BANNER_END%
from pathlib import Path
import argparse
import random
import numpy as np
import matplotlib.cm as cm
import torch
from models.matching import Matching
from models.utils import (compute_pose_error, compute_epipolar_error,
estimate_pose, make_matching_plot,
error_colormap, AverageTimer, pose_auc, read_image,
rotate_intrinsics, rotate_pose_inplane,
scale_intrinsics)
torch.set_grad_enabled(False)
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Image pair matching and pose evaluation with SuperGlue',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--input_pairs', type=str, default='assets/scannet_sample_pairs_with_gt.txt',
help='Path to the list of image pairs')
parser.add_argument(
'--input_dir', type=str, default='assets/scannet_sample_images/',
help='Path to the directory that contains the images')
parser.add_argument(
'--output_dir', type=str, default='dump_match_pairs/',
help='Path to the directory in which the .npz results and optionally,'
'the visualization images are written')
parser.add_argument(
'--max_length', type=int, default=-1,
help='Maximum number of pairs to evaluate')
parser.add_argument(
'--resize', type=int, nargs='+', default=[640, 480],
help='Resize the input image before running inference. If two numbers, '
'resize to the exact dimensions, if one number, resize the max '
'dimension, if -1, do not resize')
parser.add_argument(
'--resize_float', action='store_true',
help='Resize the image after casting uint8 to float')
parser.add_argument(
'--superglue', choices={'indoor', 'outdoor'}, default='indoor',
help='SuperGlue weights')
parser.add_argument(
'--max_keypoints', type=int, default=1024,
help='Maximum number of keypoints detected by Superpoint'
' (\'-1\' keeps all keypoints)')
parser.add_argument(
'--keypoint_threshold', type=float, default=0.005,
help='SuperPoint keypoint detector confidence threshold')
parser.add_argument(
'--nms_radius', type=int, default=4,
help='SuperPoint Non Maximum Suppression (NMS) radius'
' (Must be positive)')
parser.add_argument(
'--sinkhorn_iterations', type=int, default=20,
help='Number of Sinkhorn iterations performed by SuperGlue')
parser.add_argument(
'--match_threshold', type=float, default=0.2,
help='SuperGlue match threshold')
parser.add_argument(
'--viz', action='store_true',
help='Visualize the matches and dump the plots')
parser.add_argument(
'--eval', action='store_true',
help='Perform the evaluation'
' (requires ground truth pose and intrinsics)')
parser.add_argument(
'--fast_viz', action='store_true',
help='Use faster image visualization with OpenCV instead of Matplotlib')
parser.add_argument(
'--cache', action='store_true',
help='Skip the pair if output .npz files are already found')
parser.add_argument(
'--show_keypoints', action='store_true',
help='Plot the keypoints in addition to the matches')
parser.add_argument(
'--viz_extension', type=str, default='png', choices=['png', 'pdf'],
help='Visualization file extension. Use pdf for highest-quality.')
parser.add_argument(
'--opencv_display', action='store_true',
help='Visualize via OpenCV before saving output images')
parser.add_argument(
'--shuffle', action='store_true',
help='Shuffle ordering of pairs before processing')
parser.add_argument(
'--force_cpu', action='store_true',
help='Force pytorch to run in CPU mode.')
opt = parser.parse_args()
print(opt)
assert not (opt.opencv_display and not opt.viz), 'Must use --viz with --opencv_display'
assert not (opt.opencv_display and not opt.fast_viz), 'Cannot use --opencv_display without --fast_viz'
assert not (opt.fast_viz and not opt.viz), 'Must use --viz with --fast_viz'
assert not (opt.fast_viz and opt.viz_extension == 'pdf'), 'Cannot use pdf extension with --fast_viz'
if len(opt.resize) == 2 and opt.resize[1] == -1:
opt.resize = opt.resize[0:1]
if len(opt.resize) == 2:
print('Will resize to {}x{} (WxH)'.format(
opt.resize[0], opt.resize[1]))
elif len(opt.resize) == 1 and opt.resize[0] > 0:
print('Will resize max dimension to {}'.format(opt.resize[0]))
elif len(opt.resize) == 1:
print('Will not resize images')
else:
raise ValueError('Cannot specify more than two integers for --resize')
with open(opt.input_pairs, 'r') as f:
pairs = [l.split() for l in f.readlines()]
if opt.max_length > -1:
pairs = pairs[0:np.min([len(pairs), opt.max_length])]
if opt.shuffle:
random.Random(0).shuffle(pairs)
if opt.eval:
if not all([len(p) == 38 for p in pairs]):
raise ValueError(
'All pairs should have ground truth info for evaluation.'
'File \"{}\" needs 38 valid entries per row'.format(opt.input_pairs))
# Load the SuperPoint and SuperGlue models.
device = 'cuda' if torch.cuda.is_available() and not opt.force_cpu else 'cpu'
print('Running inference on device \"{}\"'.format(device))
config = {
'superpoint': {
'nms_radius': opt.nms_radius,
'keypoint_threshold': opt.keypoint_threshold,
'max_keypoints': opt.max_keypoints
},
'superglue': {
'weights': opt.superglue,
'sinkhorn_iterations': opt.sinkhorn_iterations,
'match_threshold': opt.match_threshold,
}
}
matching = Matching(config).eval().to(device)
# Create the output directories if they do not exist already.
input_dir = Path(opt.input_dir)
print('Looking for data in directory \"{}\"'.format(input_dir))
output_dir = Path(opt.output_dir)
output_dir.mkdir(exist_ok=True, parents=True)
print('Will write matches to directory \"{}\"'.format(output_dir))
if opt.eval:
print('Will write evaluation results',
'to directory \"{}\"'.format(output_dir))
if opt.viz:
print('Will write visualization images to',
'directory \"{}\"'.format(output_dir))
timer = AverageTimer(newline=True)
for i, pair in enumerate(pairs):
name0, name1 = pair[:2]
stem0, stem1 = Path(name0).stem, Path(name1).stem
matches_path = output_dir / '{}_{}_matches.npz'.format(stem0, stem1)
eval_path = output_dir / '{}_{}_evaluation.npz'.format(stem0, stem1)
viz_path = output_dir / '{}_{}_matches.{}'.format(stem0, stem1, opt.viz_extension)
viz_eval_path = output_dir / \
'{}_{}_evaluation.{}'.format(stem0, stem1, opt.viz_extension)
# Handle --cache logic.
do_match = True
do_eval = opt.eval
do_viz = opt.viz
do_viz_eval = opt.eval and opt.viz
if opt.cache:
if matches_path.exists():
try:
results = np.load(matches_path)
except:
raise IOError('Cannot load matches .npz file: %s' %
matches_path)
kpts0, kpts1 = results['keypoints0'], results['keypoints1']
matches, conf = results['matches'], results['match_confidence']
do_match = False
if opt.eval and eval_path.exists():
try:
results = np.load(eval_path)
except:
raise IOError('Cannot load eval .npz file: %s' % eval_path)
err_R, err_t = results['error_R'], results['error_t']
precision = results['precision']
matching_score = results['matching_score']
num_correct = results['num_correct']
epi_errs = results['epipolar_errors']
do_eval = False
if opt.viz and viz_path.exists():
do_viz = False
if opt.viz and opt.eval and viz_eval_path.exists():
do_viz_eval = False
timer.update('load_cache')
if not (do_match or do_eval or do_viz or do_viz_eval):
timer.print('Finished pair {:5} of {:5}'.format(i, len(pairs)))
continue
# If a rotation integer is provided (e.g. from EXIF data), use it:
if len(pair) >= 5:
rot0, rot1 = int(pair[2]), int(pair[3])
else:
rot0, rot1 = 0, 0
# Load the image pair.
image0, inp0, scales0 = read_image(
input_dir / name0, device, opt.resize, rot0, opt.resize_float)
image1, inp1, scales1 = read_image(
input_dir / name1, device, opt.resize, rot1, opt.resize_float)
if image0 is None or image1 is None:
print('Problem reading image pair: {} {}'.format(
input_dir/name0, input_dir/name1))
exit(1)
timer.update('load_image')
if do_match:
# Perform the matching.
pred = matching({'image0': inp0, 'image1': inp1})
pred = {k: v[0].cpu().numpy() for k, v in pred.items()}
kpts0, kpts1 = pred['keypoints0'], pred['keypoints1']
matches, conf = pred['matches0'], pred['matching_scores0']
timer.update('matcher')
# Write the matches to disk.
out_matches = {'keypoints0': kpts0, 'keypoints1': kpts1,
'matches': matches, 'match_confidence': conf}
np.savez(str(matches_path), **out_matches)
# Keep the matching keypoints.
valid = matches > -1
mkpts0 = kpts0[valid]
mkpts1 = kpts1[matches[valid]]
mconf = conf[valid]
if do_eval:
# Estimate the pose and compute the pose error.
assert len(pair) == 38, 'Pair does not have ground truth info'
K0 = np.array(pair[4:13]).astype(float).reshape(3, 3)
K1 = np.array(pair[13:22]).astype(float).reshape(3, 3)
T_0to1 = np.array(pair[22:]).astype(float).reshape(4, 4)
# Scale the intrinsics to resized image.
K0 = scale_intrinsics(K0, scales0)
K1 = scale_intrinsics(K1, scales1)
# Update the intrinsics + extrinsics if EXIF rotation was found.
if rot0 != 0 or rot1 != 0:
cam0_T_w = np.eye(4)
cam1_T_w = T_0to1
if rot0 != 0:
K0 = rotate_intrinsics(K0, image0.shape, rot0)
cam0_T_w = rotate_pose_inplane(cam0_T_w, rot0)
if rot1 != 0:
K1 = rotate_intrinsics(K1, image1.shape, rot1)
cam1_T_w = rotate_pose_inplane(cam1_T_w, rot1)
cam1_T_cam0 = cam1_T_w @ np.linalg.inv(cam0_T_w)
T_0to1 = cam1_T_cam0
epi_errs = compute_epipolar_error(mkpts0, mkpts1, T_0to1, K0, K1)
correct = epi_errs < 5e-4
num_correct = np.sum(correct)
precision = np.mean(correct) if len(correct) > 0 else 0
matching_score = num_correct / len(kpts0) if len(kpts0) > 0 else 0
thresh = 1. # In pixels relative to resized image size.
ret = estimate_pose(mkpts0, mkpts1, K0, K1, thresh)
if ret is None:
err_t, err_R = np.inf, np.inf
else:
R, t, inliers = ret
err_t, err_R = compute_pose_error(T_0to1, R, t)
# Write the evaluation results to disk.
out_eval = {'error_t': err_t,
'error_R': err_R,
'precision': precision,
'matching_score': matching_score,
'num_correct': num_correct,
'epipolar_errors': epi_errs}
np.savez(str(eval_path), **out_eval)
timer.update('eval')
if do_viz:
# Visualize the matches.
color = cm.jet(mconf)
text = [
'SuperGlue',
'Keypoints: {}:{}'.format(len(kpts0), len(kpts1)),
'Matches: {}'.format(len(mkpts0)),
]
if rot0 != 0 or rot1 != 0:
text.append('Rotation: {}:{}'.format(rot0, rot1))
# Display extra parameter info.
k_thresh = matching.superpoint.config['keypoint_threshold']
m_thresh = matching.superglue.config['match_threshold']
small_text = [
'Keypoint Threshold: {:.4f}'.format(k_thresh),
'Match Threshold: {:.2f}'.format(m_thresh),
'Image Pair: {}:{}'.format(stem0, stem1),
]
make_matching_plot(
image0, image1, kpts0, kpts1, mkpts0, mkpts1, color,
text, viz_path, opt.show_keypoints,
opt.fast_viz, opt.opencv_display, 'Matches', small_text)
timer.update('viz_match')
if do_viz_eval:
# Visualize the evaluation results for the image pair.
color = np.clip((epi_errs - 0) / (1e-3 - 0), 0, 1)
color = error_colormap(1 - color)
deg, delta = ' deg', 'Delta '
if not opt.fast_viz:
deg, delta = '°', '$\\Delta$'
e_t = 'FAIL' if np.isinf(err_t) else '{:.1f}{}'.format(err_t, deg)
e_R = 'FAIL' if np.isinf(err_R) else '{:.1f}{}'.format(err_R, deg)
text = [
'SuperGlue',
'{}R: {}'.format(delta, e_R), '{}t: {}'.format(delta, e_t),
'inliers: {}/{}'.format(num_correct, (matches > -1).sum()),
]
if rot0 != 0 or rot1 != 0:
text.append('Rotation: {}:{}'.format(rot0, rot1))
# Display extra parameter info (only works with --fast_viz).
k_thresh = matching.superpoint.config['keypoint_threshold']
m_thresh = matching.superglue.config['match_threshold']
small_text = [
'Keypoint Threshold: {:.4f}'.format(k_thresh),
'Match Threshold: {:.2f}'.format(m_thresh),
'Image Pair: {}:{}'.format(stem0, stem1),
]
make_matching_plot(
image0, image1, kpts0, kpts1, mkpts0,
mkpts1, color, text, viz_eval_path,
opt.show_keypoints, opt.fast_viz,
opt.opencv_display, 'Relative Pose', small_text)
timer.update('viz_eval')
timer.print('Finished pair {:5} of {:5}'.format(i, len(pairs)))
if opt.eval:
# Collate the results into a final table and print to terminal.
pose_errors = []
precisions = []
matching_scores = []
for pair in pairs:
name0, name1 = pair[:2]
stem0, stem1 = Path(name0).stem, Path(name1).stem
eval_path = output_dir / \
'{}_{}_evaluation.npz'.format(stem0, stem1)
results = np.load(eval_path)
pose_error = np.maximum(results['error_t'], results['error_R'])
pose_errors.append(pose_error)
precisions.append(results['precision'])
matching_scores.append(results['matching_score'])
thresholds = [5, 10, 20]
aucs = pose_auc(pose_errors, thresholds)
aucs = [100.*yy for yy in aucs]
prec = 100.*np.mean(precisions)
ms = 100.*np.mean(matching_scores)
print('Evaluation Results (mean over {} pairs):'.format(len(pairs)))
print('AUC@5\t AUC@10\t AUC@20\t Prec\t MScore\t')
print('{:.2f}\t {:.2f}\t {:.2f}\t {:.2f}\t {:.2f}\t'.format(
aucs[0], aucs[1], aucs[2], prec, ms))