IbrahimHasani's picture
Update app.py
cbab6c8 verified
import gradio as gr
import torch
import numpy as np
from transformers import OwlViTProcessor, OwlViTForObjectDetection
from PIL import Image, ImageDraw
import cv2
import torch.nn.functional as F
import tempfile
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from io import BytesIO
from SuperGluePretrainedNetwork.models.matching import Matching
from SuperGluePretrainedNetwork.models.utils import read_image
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load models
model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32").to(device)
processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32")
matching = Matching({
'superpoint': {'nms_radius': 4, 'keypoint_threshold': 0.005, 'max_keypoints': 1024},
'superglue': {'weights': 'outdoor', 'sinkhorn_iterations': 20, 'match_threshold': 0.2}
}).eval().to(device)
# Utility functions
def save_array_to_temp_image(arr):
rgb_arr = cv2.cvtColor(arr, cv2.COLOR_BGR2RGB)
img = Image.fromarray(rgb_arr)
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
temp_file_name = temp_file.name
temp_file.close()
img.save(temp_file_name)
return temp_file_name
def unified_matching_plot2(image0, image1, kpts0, kpts1, mkpts0, mkpts1, color, text, path=None, show_keypoints=False, fast_viz=False, opencv_display=False, opencv_title='matches', small_text=[]):
height = min(image0.shape[0], image1.shape[0])
image0_resized = cv2.resize(image0, (int(image0.shape[1] * height / image0.shape[0]), height))
image1_resized = cv2.resize(image1, (int(image1.shape[1] * height / image1.shape[0]), height))
plt.figure(figsize=(15, 15))
plt.subplot(1, 2, 1)
plt.imshow(image0_resized)
plt.scatter(kpts0[:, 0], kpts0[:, 1], color='r', s=1)
plt.axis('off')
plt.subplot(1, 2, 2)
plt.imshow(image1_resized)
plt.scatter(kpts1[:, 0], kpts1[:, 1], color='r', s=1)
plt.axis('off')
fig, ax = plt.subplots(figsize=(20, 20))
plt.plot([mkpts0[:, 0], mkpts1[:, 0] + image0_resized.shape[1]], [mkpts0[:, 1], mkpts1[:, 1]], 'r', lw=0.5)
plt.scatter(mkpts0[:, 0], mkpts0[:, 1], s=2, marker='o', color='b')
plt.scatter(mkpts1[:, 0] + image0_resized.shape[1], mkpts1[:, 1], s=2, marker='o', color='g')
plt.imshow(np.hstack([image0_resized, image1_resized]), aspect='auto')
plt.suptitle('\n'.join(text), fontsize=20, fontweight='bold')
plt.tight_layout()
plt.show()
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
img_arr = np.frombuffer(buf.getvalue(), dtype=np.uint8)
buf.close()
img = cv2.imdecode(img_arr, 1)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.close(fig)
return img
def stitch_images(images):
"""Stitches a list of images vertically."""
if not images:
return Image.new('RGB', (100, 100), color='gray')
max_width = max([img.width for img in images])
total_height = sum(img.height for img in images)
composite = Image.new('RGB', (max_width, total_height))
y_offset = 0
for img in images:
composite.paste(img, (0, y_offset))
y_offset += img.height
return composite
# Main functions
def detect_and_crop(target_image, query_image, threshold=0.5, nms_threshold=0.3):
target_sizes = torch.Tensor([target_image.size[::-1]])
inputs = processor(images=target_image, query_images=query_image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model.image_guided_detection(**inputs)
img = cv2.cvtColor(np.array(target_image), cv2.COLOR_BGR2RGB)
outputs.logits = outputs.logits.cpu()
outputs.target_pred_boxes = outputs.target_pred_boxes.cpu()
results = processor.post_process_image_guided_detection(outputs=outputs, threshold=threshold, nms_threshold=nms_threshold, target_sizes=target_sizes)
boxes, scores = results[0]["boxes"], results[0]["scores"]
if len(boxes) == 0:
return [], None
filtered_boxes = []
for box in boxes:
x1, y1, x2, y2 = [int(i) for i in box.tolist()]
cropped_img = img[y1:y2, x1:x2]
if cropped_img.size != 0:
filtered_boxes.append(cropped_img)
draw = ImageDraw.Draw(target_image)
for box in boxes:
draw.rectangle(box.tolist(), outline="red", width=3)
return filtered_boxes, target_image
def image_matching_no_pyramid(query_img, target_img, visualize=True):
temp_query = save_array_to_temp_image(np.array(query_img))
temp_target = save_array_to_temp_image(np.array(target_img))
image1, inp1, scales1 = read_image(temp_target, device, [640*2], 0, True)
image0, inp0, scales0 = read_image(temp_query, device, [640*2], 0, True)
if image0 is None or image1 is None:
return None
pred = matching({'image0': inp0, 'image1': inp1})
pred = {k: v[0] for k, v in pred.items()}
kpts0, kpts1 = pred['keypoints0'], pred['keypoints1']
matches, conf = pred['matches0'], pred['matching_scores0']
valid = matches > -1
mkpts0 = kpts0[valid]
mkpts1 = kpts1[matches[valid]]
mconf = conf[valid]
color = cm.jet(mconf.detach().cpu().numpy())[:len(mkpts0)]
valid_count = np.sum(valid.tolist())
mkpts0_np = mkpts0.cpu().numpy()
mkpts1_np = mkpts1.cpu().numpy()
try:
H, inliers = cv2.findHomography(mkpts0_np, mkpts1_np, cv2.RANSAC, 5.0)
except:
inliers = 0
num_inliers = np.sum(inliers)
if visualize:
visualized_img = unified_matching_plot2(
image0, image1, kpts0, kpts1, mkpts0, mkpts1, color, ['Matches'], True, False, True, 'Matches', [])
else:
visualized_img = None
return {
'valid': [valid_count],
'inliers': [num_inliers],
'visualized_image': [visualized_img]
}
def check_object_in_image(query_image, target_image, threshold=50, scale_factor=[0.33, 0.66, 1]):
images_to_return = []
cropped_images, bbox_image = detect_and_crop(target_image, query_image)
temp_files = [save_array_to_temp_image(i) for i in cropped_images]
crop_results = [image_matching_no_pyramid(query_image, Image.open(i), visualize=True) for i in temp_files]
cropped_visuals = []
cropped_inliers = []
for result in crop_results:
if result:
for img in result['visualized_image']:
cropped_visuals.append(Image.fromarray(img))
for inliers_ in result['inliers']:
cropped_inliers.append(inliers_)
images_to_return.append(stitch_images(cropped_visuals))
is_present = any(value >= threshold for value in cropped_inliers)
return {
'is_present': is_present,
'image_with_boxes': bbox_image,
'object_detection_inliers': [int(i) for i in cropped_inliers],
}
def interface(poster_source, media_source, threshold, scale_factor):
result1 = check_object_in_image(poster_source, media_source, threshold, scale_factor)
if result1['is_present']:
return result1['is_present'], result1['image_with_boxes']
result2 = check_object_in_image(poster_source, media_source, threshold, scale_factor)
return result2['is_present'], result2['image_with_boxes']
iface = gr.Interface(
fn=interface,
inputs=[
gr.Image(type="pil", label="Upload a Query Image (Poster)"),
gr.Image(type="pil", label="Upload a Target Image (Media)"),
gr.Slider(minimum=0, maximum=100, step=1, value=50, label="Threshold"),
gr.CheckboxGroup(choices=["0.33", "0.66", "1.0"], value=["0.33", "0.66", "1.0"], label="Scale Factors"),
],
outputs=[
gr.Label(label="Object Presence"),
gr.Image(type="pil", label="Detected Bounding Boxes"),
],
title="Object Detection in Images",
description="""
This application allows you to check if an object in a query image (poster) is present in a target image (media).
Steps:
1. Upload a Query Image (Poster)
2. Upload a Target Image (Media)
3. Set Threshold
4. Set Scale Factors
5. View Results
"""
)
if __name__ == "__main__":
iface.launch()